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Physiological Noise in MR Images: An Indicator of
the Tissue Response to Ischemia?

Harris H. Wang, SB,! Nina M. Menezes, PhD,? Ming Wang Zhu, MD,? Hakan Ay, MD,?>
Walter J. Koroshetz, MD,® Hannu J. Aronen, MD, PhD,*~® Jari O. Karonen, MD, PhD,”-8
Yawu Liu, MD, PhD,”-® Juho Nuutinen, MD,”-® Lawrence L. Wald, PhD,? and

A. Gregory Sorensen, MD*-2*

Purpose: To determine whether measuring signal intensity
(SI) fluctuations in MRI time series data from acute stroke
patients would identify ischemic tissue.

Materials and Methods: Prebolus perfusion-weighted MRI
data from 32 acute ischemic stroke patients (N = 32) was
analyzed as a time series. Ischemic and normal tissue re-
gions were outlined and compared.

Results: The magnitude of the measured SI fluctuations
was significantly lower in ischemic regions relative to nor-
mal tissue. Spatial differences in these fluctuations oc-
curred in a manner that was different than other perfusion-
based metrics.

Conclusion: Prior studies have shown that SI fluctuations
in MRI time series data correspond to the presence of phys-
iological “noise,” which includes vasomotion, an autoregu-
latory phenomenon that affects the tissue response to isch-
emia. In this study, SI fluctuations were found to decrease
in ischemia, consistent with the notion that small vessels
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will remain open (fluctuations in vessel diameter will de-
crease) when there is a challenge to flow. Spatial variation
in SI fluctuations appeared to be different from spatial
variation seen on other perfusion-based metrics, suggest-
ing that a separate contrast mechanism is responsible, one
that might be of diagnostic and prognostic value in acute
stroke in which the ability of tissue to withstand ischemia
is currently not well visualized.

Key Words: stroke; ischemia; MRI; vasomotion; noise
J. Magn. Reson. Imaging 2008;27:866-871.
© 2008 Wiley-Liss, Inc.

SPONTANEOUS low frequency oscillations (<0.1 Hz) in
regional cerebral blood flow (CBF) and oxygenation
have been observed using blood oxygen level dependent
(BOLD) MRI time series measurements in the so-called
“resting state,” i.e., in the absence of any functional
task (Fig. 1) (1-6). The frequency of these fluctuations is
much lower than those attributed to cardiac motion
and respiration (with fundamental frequencies at ap-
proximately 1 Hz and 0.2-0.3 Hz, respectively). To-
gether, these three frequency components constitute
the small physiological signals, sometimes referred to
as physiological “noise,” in MRI time series data, mod-
ulating signal intensity (SI). Numerous techniques have
been developed to isolate and remove this and other
physiological noise components from BOLD data (7-10)
and, although the biological basis of the low frequency
component of physiological noise is not completely un-
derstood, it is believed to correspond to arteriolar vaso-
motion, an adaptive hemodynamic response that helps
regulate blood flow. Indeed, the low-frequency compo-
nent found in MRI time series data corresponds to the
frequency attributed to arteriolar vasomotion and has
been found to be synchronized between linked brain
regions, suggesting neuronal mediation, and hence a
link to neuronal viability.

Vasomotion is the rhythmic oscillation in vascular
diameter or tone caused by local changes in vascular
smooth muscle contraction and dilation, and differs
from oscillations caused by pulse, respiration, and neu-
ronal activity. Vasomotion is thought to occur normally
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Figure 1. Power spectra corresponding to a gray matter voxel, a white matter voxel, and a CSF voxel produced by performing
time-domain fast Fourier transforms on time series data collected on a normal volunteer using a short TR acquisition (TR/TE =
136 msec/54 msec, single axial slice = 256 images). Note the different peaks corresponding to presumed sources of physiological
noise (arrows) and their harmonics: vasomotion (approximately 0.1 Hz), respiration (0.2 Hz), and cardiac motion (1.3 Hz). The
frequencies of respiration and cardiac noise spectral components were determined by measuring the subject’s respiratory and
heart rates; the frequency of vasomotion is estimated based on published values. Low-frequency fluctuations (presumed to
correspond to vasomotion) appear to be more prominent in gray matter and CSF than in white matter. Respiration and cardiac
motion appear to be most pronounced in CSF. The faint dotted line in each plot corresponds to the spectrum of a background

voxel. Data such as this (i.e., long time series with a short TR) was not available in our clinical stroke cohort.

and varies in response to the tissue’s demand for oxy-
gen. Thus, one might expect that vasomotion would be
altered in ischemia, with the microvasculature maxi-
mally dilated. Studies have confirmed that the ampli-
tude of synchronized fluctuations decreases (consistent
with the notion that the arterioles remain open) in re-
sponse to altered brain perfusion due to hypotension,
hyperventilation, cerebral artery occlusion, and cere-
bral vasoconstriction (3,11). Furthermore, fluctuations
were found to be absent in severely ischemic brain
regions (11). Thus, measurements of vasomotion ap-
pear likely to be of potential diagnostic and prognostic
value in determining tissue fate in acute stroke.

Currently, imaging in the acute phase of ischemic
stroke is used to establish or confirm the diagnosis and
to exclude hemorrhage. Much research has focused on
utilizing imaging to differentiate between ischemic tis-
sue that is potentially salvageable and tissue that is
irreversibly injured. To this end, diffusion-weighted and
perfusion-weighted MRI (DWI and PWI, respectively)
techniques have shown great utility in acute stroke
(12-24), helping to define the abnormally perfused ter-
ritory and depicting the tissue that is likely to infarct.
However, the natural history of abnormally perfused
tissue is highly variable and this variability is not fully
determined by DWI and PWI parameters. Measuring
vasomotion could complement existing MRI techniques
used in stroke by providing a much needed window into
the ability of tissue to withstand ischemia.

In this study, we analyzed prebolus PWI MR images
from stroke patients as time series data and quantified
physiological noise by measuring the shot-to-shot vari-
ation in the time series SI, calculated via the standard
deviation (SD). PWI is performed routinely in the acute
stroke setting to visualize the extent of the ischemic
territory and, therefore, is readily available for further
analyses. PWI consists of a time series of T2*-weighted
images, similar in this sense to BOLD data in which low

frequency fluctuations have been observed. In order to
avoid confounds due to the contrast bolus, we limited
our examination to the prebolus segment. The goal of
this pilot study was to determine whether measures of
physiological noise in this data would identify ischemic
tissue. Specifically, we sought to determine: 1) whether
there is any spatial structure to maps that quantify SI
fluctuations (a measure of physiological noise) in acute
stroke prebolus PWI; 2) whether any such spatial vari-
ation corresponds to tissue at risk of infarction on fol-
low-up; and 3) whether this spatial variation is different
than the commonly calculated PWI metrics of mean
transit time (MTT), CBF, and cerebral blood volume
(CBV).

MATERIALS AND METHODS

This was a retrospective study of consecutively-ac-
quired patient data sets. To be included in the study,
ischemic stroke patients had to have undergone PWI
within 12 hours of symptom onset, follow-up T2 imag-
ing a minimum of five days after symptom onset, and no
visually appreciable gross head motion on PWI. A total
of 32 patients with anterior MCA ischemic stroke were
included (17 men and 15 women), with Institutional
Review Board approval. The average age of the patients
was 67 years. The average time to MRI was 6.5 hours.

MR images were acquired as follows. Axial single-shot
echo-planar images were acquired during the first pass
of 0.2 mmol/kg of a gadolinium-based contrast agent
injected 10 seconds after the start of imaging at a rate of
5 mL/second with use of an MRI-compatible power
injector (Medrad, Pittsburgh, PA, USA). The contrast
agent was followed by a comparable volume of normal
saline injected at the same rate of 5 mL/second. Data-
sets consisted of 7-11 slices over 40-80 time points at
1.5 T. A fixed field of view (FOV) of 220 X 220 mm and
an acquisition matrix of 128 X 128 pixels were used.
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Table 1
Normal Differences

No. of Average difference
patients in og?
White < gray 31 11.4 £ 4.3%
White = gray 1 N/S
White > gray
Total 32

NS = not significant.

Slice thickness was 5-6 mm and TR/TE = 1500/65-78
msec.

Because of the low number of prebolus images in
these PWI series, it was not possible to perform a Fou-
rier transform analysis, filtering for the low frequency
component. Instead, MRI SI fluctuations were quanti-
fied by calculating the SD of the prebolus perfusion
images (os). The number of images varied from patient
to patient, 17 images on average. o> was calculated on
a voxel-by-voxel basis to produce maps. The first two
images were excluded from the og calculation because
they often showed different SIs due to transient mag-
netization, leaving approximately 15 images used to
generate each patient’s og® map. To avoid introducing
artifacts in calculating og2, no filtering, data fitting, or
motion correction algorithms were used (5).

Concentrations vs. time curves were extrapolated
from the perfusion images on a voxel-by-voxel basis.
Integrating the curve over time produces values propor-
tional to CBV. CBF was then computed using deconvo-
lution techniques (25). From the central volume theo-
rem, MTT was then calculated as MTT = CBV/CBF.

A neuroradiologist blinded to the follow-up images
outlined areas of abnormal MTT representing the acute
lesion and the outlines were transferred to the og?
maps. Lesions were additionally manually subdivided
into gray and white matter with the help of the first
image in the perfusion series, excluding voxels contain-
ing CSF or those from blood vessels. Healthy gray and

Time (sec)
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white matter were also manually outlined. Voxels per-
taining to one of the four subgroups (lesion white, le-
sion gray, normal white, and normal gray) in all slices
were pooled for each patient, and statistical tests were
done to compare differences between these pools of
voxels for each patient. The difference between lesion
gray and normal gray matter, as well as lesion white
and normal white matter, was calculated for each pa-
tient. Student’s t-test was then applied to the gray and
white matter og® differences on a patient-by-patient
basis to determine whether they were significant (P =
0.05). This process was then repeated using CBF and
then CBV maps to identify the acute lesion.

Areas of abnormal T2, representing the final infarct,
were also outlined for each patient and the outlines
transferred to the og® maps. We compared gray and
white matter in the regions that were “missed” on acute
PWI (i.e., those regions that appeared normal on acute
perfusion imaging but went onto infarct on follow-up
T2) to normal tissue (i.e., tissue that was normal on
acute DWI and PWI as well as on follow-up T2 images).

RESULTS

Normal Variation

We observed variations in the os® maps that generally
corresponded to a spatial pattern. In normal sections,
this spatial pattern corresponded to gray-white con-
trast. For 31 of 32 patients, normal white matter voxels
had significantly lower average og® than voxels of nor-
mal gray matter (P = 0.05, Table 1). This difference, as
high as 20% in some cases, was 11.4 = 4.3% on aver-
age. An example of a normal brain slice, showing the
difference in og® between white and gray matter, is
shown in Fig. 2. For the remaining patient, the average
og” in voxels of normal white matter was not statisti-
cally different than the average og in voxels of normal
gray matter.

Figure 2. An example of a nor-
mal brain slice from a stroke
patient who showed decreased
os” in normal white matter rel-
ative to normal gray matter.
The og® map was maximally
windowed to best show the dif-
ferences between white and
gray matter. Also shown are
acute DWI, MTT, CBF, CBV,
and follow-up T2 images. SI vs.
time curves for a normal gray
matter voxel and a normal
white matter voxel are plotted.
These clearly show decreased
fluctuations normally found in

Vime (sec) white matter relative to gray.
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Figure 3. A typical stroke pa-
tient who showed decreased
og” in the acute PWI lesion.
The os® map is shown along
with acute DWI, MTT, CBF,
CBV, and follow-up T2 images.
Also shown are SI vs. time
curves for a normal gray mat-
ter voxel and an ischemic gray
matter voxel. Note the decrease
in fluctuations in the ischemic
time series relative to normal
as well as the lower intensity in
the ischemic region on the og
map.

Ischemic Differences

Figure 3 is an example of a brain slice with a lesion,
showing the difference in og? between normal tissue
and the lesion. There were often no obvious boundaries
on the og®> maps between normal tissue and the lesion.
We therefore used MTT, CBF, and CBV maps to select
regions of interest in order to assess whether og? re-
flects ischemia. Table 2 summarizes the differences in
og” between voxels in the lesion as identified on acute
MTT maps and voxels identified as normal tissue. Be-
cause of the differences in og® seen normally between
gray and white matter, we analyzed these two tissue
types separately. We found that for gray matter, MTT
lesion og® was lower than normal in most patients
(20/32) by approximately 6.4% on average. We found
that for white matter, the average og” in lesion voxels
was often lower than average os in normal voxels (11
patients), but, equally often, not significantly different
than normal (11 patients).

Table 3 summarizes the findings for the average og”
in lesion voxels compared to normal voxels when CBF
was used to define the acute lesion. For gray matter,
average lesion os> was lower than normal for most (25
of 32), but not all (7/32), cases. For white matter, av-
erage lesion og® was not clearly distinguishable from
the average og,” in normal voxels as often as it was lower
than in normal voxels (lower average og® in 13 patients,
similar in 19 patients). Table 4 summarizes the findings

Table 2
Comparison Using MTT
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Normal Voxel
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for o lesion compared to normal when CBV was used
to define the acute lesion. For gray matter, average og
in lesion voxels was lower than average og” in normal
voxels for only half of the cases (15/30).

In addition, we examined og> maps for their ability to
detect ischemia in regions that appeared normal on all
acute PWI maps but went onto infarct on follow-up T2
(termed “missed” regions). For gray matter, og?® was
able to reflect abnormalities consistent with ischemia in
missed regions in at least half of the cases (Table 5) for
MTT, CBF, and CBV, demonstrating that og” contains
information beyond that seen on acute PWI. These find-
ings were not observed in white matter (data not
shown).

DISCUSSION

In conclusion, we report a novel contrast mechanism to
visualize brain ischemia. SD (0s?) maps of MRI time
series data, which quantify noise, including noise from
physiological sources, appear to contain spatial struc-
ture, vary with tissue type and pathology, and differ
from PWI metrics calculated from, in part, the same
underlying imaging data. To our knowledge, this is the
first report of an investigation into the utility of mea-
suring physiological noise in MRI data in stroke. Our
work supports earlier reports of low frequency signal
fluctuations consistent with physiologic vasomotion in

Table 3
Comparison Using CBF

No. of Average difference No. of Average difference
Gray matter ) . > Gray matter ) . >
patients in og patients in og
Lesion < normal 20 —6.4 * 6.2% Lesion < normal 25 —-5.4 £ 5.0%
Lesion = normal 6 N/S Lesion = normal 6 N/S
Lesion > normal 6 4.3 + 2.7% Lesion > normal 1 3.2%
Total 32 Total 32

N/S = not significant.

N/S = not significant.
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the brain. In extending this type of analysis to patients
with acute ischemic stroke, we report that s appears
to be a novel contrast mechanism to visualize ischemic
tissue. We found that og® maps of prebolus perfusion
images show spatial variation both between normal
gray and white matter, and also between ischemic and
normal tissue. Because thermal and scanner noise do
not typically correspond to any particular spatial dis-
tribution, we speculate that the regional differences
seen on the og” maps are due to physiological noise.
Furthermore, because we do not expect to find differ-
ences from bulk cardiac (26) and/or respiratory motion
in ischemic regions relative to normal, we propose that
the spatial differences we observed in o> are due to the
vasomotion component of physiological noise.

We expect that, while related, o> maps should pro-
vide different information than CBF since one may be
more sensitive to the microvasculature while the other
may be more sensitive to the macrovasculature. If this
is not the case, then og® may provide a nonexogenous-
contrast method of measuring CBF. We found that og
indicated the same threatened tissue as CBF in most
(25/32), but not all, patients (7/32). In addition, og?
was sensitive to tissue at risk “missed” on CBF in seven
out of 12 patients in whom “missed” regions were ob-
served. While these findings need to be confirmed in a
larger cohort, this suggests that g and CBF provide
different information.

One limitation to our pilot study is its retrospective
nature. In addition to the unknown biases that can
arise from retrospective studies, a shortcoming is the
frequency of the prebolus PWI images was not suffi-
ciently high (i.e., the TR was 1.5 seconds) to avoid alias-
ing of the cardiac peak (approximately 1 Hz), and the
limited number of prebolus images made it unfeasible
to perform more sophisticated analyses (i.e., spectral
filtering methods) to isolate the low frequency compo-
nent of the signal (as performed for the subject shown
in Fig. 1). With this relatively slow sampling rate and
limited number, the power spectrum of the noise is not
well populated. Thus, we cannot state with certainty
that the o differences we see in the brain are due to
processes occurring at the 0.1 Hz rate that has been
speculated to correspond to vasomotion. While vasomo-
tion differences could easily be responsible for the og®
variation we observed, a higher sampling rate (to avoid
aliasing of the cardiac signal) and more images (to im-
prove the signal-to-noise ratio [SNR]) are required to
confirm this. It should also be noted that there are other
physiological processes besides vasomotion that have
been measured as occurring at or near 0.1 Hz. For
instance, low-frequency oscillations in blood pressure

Table 4
Comparison Using CBV

No. of Average difference
Gray matter ) . >
patients N og|
Lesion < normal 15 —-5.1 £ 3.3%
Lesion = normal 10 N/S
Lesion > normal 5 5.1+ 3.0%
Total 30

N/S = not significant.

Wang et al.

Table 5
Comparison Using “Missed” Regions (Gray Matter Only)
No. of Average difference in
patients og
MTT
Missed < normal 5 —-6.2 + 2.4%
Missed = normal 1 N/S
Missed > normal 3 14.3 = 17.9%
Total 9
CBF
Missed < normal 7 —5.9 + 2.4%
Missed = normal 2 N/S
Missed > normal 3 13.2 = 13.4%
Total 12
cBvV
Missed < normal 7 -5.1*+ 1.8%
Missed = normal 0 N/S
Missed > normal 4 111 = 9.7%
Total 11

N/S = not significant.

occur in the vicinity of 0.1 Hz. Regardless of the precise
physiological processes responsible for the spatial vari-
ation in our “noise” measurements, the fact that this
variation appears to correspond to pathology confirms
that such measurements have potential clinical utility
and therefore warrant further investigation. Our re-
sults, therefore, point clearly to a need for further stud-
ies but also provide the motivation for such studies.

Newer techniques that purportedly investigate the
status of the microvasculature, such as spin echo, dual
echo interleaved spin echo, and gradient echo acquisi-
tions, may help further isolate the vasomotion contri-
bution to physiological noise. Recently, postprocessing
techniques to develop CBF maps based on multiple
localized arterial input functions were developed
(27,28), which may additionally improve our ability to
visualize the status of the microvasculature. Further-
more, improved acquisition techniques such as the use
of eight-channel receivers and 3T (or 7T) imaging,
which may result in less machine noise, will likely im-
prove sensitivity to physiological noise (29,30).
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