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Microbial ecosystems play an important role in nature. Engineering these systems for industrial,

medical, or biotechnological purposes are important pursuits for synthetic biologists and

biological engineers moving forward. Here we provide a review of recent progress in engineering

natural and synthetic microbial ecosystems. We highlight important forward engineering design

principles, theoretical and quantitative models, new experimental and manipulation tools, and

possible applications of microbial ecosystem engineering. We argue that simply engineering

individual microbes will lead to fragile homogenous populations that are difficult to sustain,

especially in highly heterogeneous and unpredictable environments. Instead, engineered microbial

ecosystems are likely to be more robust and able to achieve complex tasks at the spatial and

temporal resolution needed for truly programmable biology.

Introduction

Microbes constitute the most abundant and diverse set of

organisms on Earth.1,2 By generating and turning over organic

material, they play a dominant role in performing key

biochemical reactions essential to sustaining the biosphere.3

As such, these micron-sized cells have evolved an impressive

array of strategies that have allowed them to grow in almost

any environment on the planet.4 Microbes, however, do not

live alone. Rather, they live in crowded environments in

association with other microbes, competing for resources,

sharing metabolism, and forming a complex, dynamic and

evolving microbial ecosystem.5,6

In nature, stable microbial consortia are generally composed

of members that have specialized physiologies and are tasked

with different roles. These intertwined roles transform individuals

that would otherwise compete into a group that lives in concert.7

Many such microbial ecosystems have evolved to be highly

refractory to perturbations in the environment and are able

to repopulate themselves when depleted in numbers. We are

now beginning to appreciate the myriad of sophisticated

processes and behaviors that manifest in microbial consortia,

some of which mirror many essential features found in higher-

level metazoans and multicellular organisms.8 Understanding

how individual microbes form communities will bring new

and important insight to the evolution of multicellularity.9

A grand challenge in applied biology is to develop the knowl-

edge and technology necessary to build these self-adaptive

systems that can perform complex tasks at the micron-scale.
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Therefore, engineering microbial communities is an important

endeavor, ripe for pursuit by synthetic biologists.

Over the past decade, the field of synthetic biology has aimed

to make biology easier to engineer.10,11 Under the paradigm of

traditional engineering, new conceptual frameworks were devised

to describe the organization of genetic regulation and cellular

machinery to build new metabolisms.12,13 New tools for the

synthesis, assembly, and engineering of genes have been scaled

to whole genomes to enable faster prototyping of biological

designs.14 Standardized inventories of useful genes and other

biological components are growing rapidly.15 All of these efforts

help us develop a better understanding of the cell and the

underlying design principles for engineering it. Scaling these

efforts to communities of cells will require the development of

new frameworks, methods and technologies.

In this review, we discuss recent advances in biological

engineering at the level of cell populations and microbial

consortia. We detail specific parameters that are crucial for

building and engineering communities of cells that can exhibit

sophisticated and robust behaviors and how these parameters

can be synthesized into theoretical and predictive models for

forward-design and engineering. We highlight new population

measurement approaches and genome-perturbation techniques

that facilitate the functional dissection of complex interactions

occurring in microbial consortia. Finally, we discuss applications

of synthetic and engineered microbial ecosystems in areas of

biotechnology, bioenergy, and medicine (Fig. 1).

Engineering parameters

What goes on in microbial communities can be quite complicated

to understand, appearing almost irreducibly complex. Therefore,

engineering such a system is a daunting task. Even when grossly

approximating a cell as a linear input–output unit, we are

confronted with the observation that interactions between cells

generate behaviors that are non-linear, asynchronous, and hetero-

geneous. Toward building a framework for engineering synthetic

microbial ecosystems, we outline a set of essential parameters

that we believe are core features of a microbial community.

These parameters should be the subject of analysis, perturba-

tion, and optimization when building synthetic ecosystems

de novo. Based on recent literature about natural and engineered

ecologies, we highlight these parameters with regard to their

significance, relationship with one another, and tunability from a

synthetic perspective. These parameters help to build a frame-

work for microbial communities where the individual members

interact with one another through exchange of material, energy,

and information (Fig. 2).

Metabolic capabilities and metabolotypes

Metabolism is the core essence of life at all scales, from

individual enzymatic reactions in each cell all the way to the

ecosystem as a whole. In nature, the goal of metabolism is to

extract energy from substrates, use them to synthesize biomass, and

leave behind waste byproducts. For any given environment, we can

argue that the residing consortium of cells performs a set of

input–output operations to generate biomass and waste from an

initial source of energy (e.g. sunlight, sugar, other biomass, etc.).

The black-box operation that the consortium performs may in fact

be very complicated depending on the metabolic capability and

efficiency of the members, as well as their abundance and diversity.

In fact, many different arrangements can be functionally equivalent

because microbes house a staggering array of metabolic capabilities

in a near infinite number of combinations. Over the past decades,

we have cataloged a significant portion of all possible chemical

and enzymatic reactions that biology can perform in databases

such as KEGG16 or MetaCyc.17 With computers and in silico

models, we can now recreate cellular metabolism for well-studied

organisms.18–22 Therefore, a deeper understanding of how meta-

bolism scales to communities of cells can now be achieved.

Fig. 1 Development of synthetic ecology requires insights gained

through manipulating simple biological systems and analyzing

complex ecological systems. Evolution must be factored into these

pursuits, not only as a destabilizing force but also as a means to

optimize our engineered designs.

Fig. 2 A summary of the crucial parameters that impact a microbial

ecosystem. These parameters determine the ecosystem’s ability to

convert an energy source into biomass and waste, and are prime

targets for engineering and optimization. Metabolic capabilities are

distributed across different members as defined by metabolotypes

(shaded and colored ovals). Metabolic exchange can occur via meta-

bolite transport across cellular membranes or through intercellular

bridges. Community structure can be tuned by adjusting the degree of

aggregation and formation of extracellular structures such as biofilms.

Horizontal gene transfer enables genomic innovation and the rise of

new capabilities within the population.
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The total metabolic capability of a microbial community

arises from the summation of capabilities of each individual

member. Identification of a cell’s metabolism is not a trivial

task, however. Traditional taxonomic classification of microbial

species by 16S rRNA23 profiling is a poor reflector of metabolic

functionality. For example, communities that are only 15% similar

as profiled by 16 S may be 70% similar in terms of metabolic

capability as determined by metagenomic sequencing.24 Further-

more, we have a poor understanding of howmetabolic capabilities

that are distributed across different individuals can impact the

community as a whole. We do know that with sufficient functional

redundancy in the population, system-level behavior can be stably

maintained even though individuals may vary in abundance.25,26

Therefore, to have a clear picture of community-level metabolism,

it is essential to identify the total list of metabolic genes, how

they are allocated among individual members, and the level of

redundancy in the system. Additionally, to improve the design

of controllable and robust systems, greater understanding of

the thermodynamics of these interacting metabolisms is

needed. Individual metabolisms can impact the physiological

environment (e.g. pH or oxygen level), as well as generate

compounds that affect metabolism. These effects combine to

shift the thermodynamic environment of cells with interacting

metabolisms, altering the rate of growth and product yields.27

We believe that the metabolotype, or the range of metabolic

capabilities of any individual cell, may be a more relevant

identifier of consortium members than the standard 16 S

phylogenetic signature. Metabolotype can be derived from

the genotype via comparative genomic analyses28 or from the

phenotype via experimental characterizations.29 Engineering

metabolotypes may provide important avenues to tune the

metabolic capacity, dynamics, and diversity of the ecosystem.

Intercellular exchange of metabolites and signals

In order to understand intercellular metabolic interactions

(i.e. those occurring between cells), we need to understand the

trafficking of metabolites across the cell membrane. The cell

membrane provides an essential function: trapping enzymes and

metabolites within the cytosol to increase their effective local

concentration, thereby increasing their rate of catalysis. Any

metabolic interaction between cells must require metabolites

and intermediates to cross the membrane barrier. For most

valuable metabolites, passive diffusion across the membrane

barrier is very limited and active transport systems are needed.

These molecular transport pumps vary in terms of specificity

(general vs. specific pumps), directionality (symport, antiport),

and energy requirement (ATP-dependency).30–32 Controlling

these transport processes is an important thrust in microbial

ecosystem engineering.

While most cells have a myriad of transporters that import

metabolites, far fewer transporters that export metabolites out

of the cell have been identified. It is thought that most

exporters (or efflux pumps) mainly serve to remove toxic or

antagonistic compounds such as antibiotics from the cell.33

More recent studies have suggested that these exporters are

important in the maintenance of cellular homeostasis by

regulating intracellular metabolite concentrations.34 For example,

a number of exporters exist to prevent excessive accumulation of

different amino acids such as R, Y, W, F, L, M, K, I.35–40

From themicrobial community perspective, these transport systems

are critical in enabling selective, and potentially programmable,

metabolite sharing between cells with different metabolotypes. In

addition to extracellular exchange, other strategies for metabolite

sharing exist. Nano-tubules or pilus-based structures enable direct

cell-to-cell exchange by establishment of cytosolic bridges.41,42

These systems allow larger macromolecules such as polypeptides,

proteins and DNA/RNA to be exchanged, thus providing

additional means to metabolically connect individual cells

within a community.

Microbes interact not only through interdependent meta-

bolisms, but also by coordinated behaviors. Group behavior

differentiates microbial communities that are merely collections

of individuals from those that truly work in a concerted fashion.

Coordinating behavior at the population level requires chemical

signals and intercellular communication systems such as quorum

sensing.43 Quorum sensing is the ability of cells to detect

population density by measuring the concentration of a

membrane-permeable chemical signal. As our knowledge of the

diversity and mechanisms of how these small-molecule sensing

systems grow, we are beginning to appreciate their important role

in the formation and maintenance of microbial communities.

For example, indole, a metabolic intermediate in tryptophan

biosynthesis, serves also to promote resistance to antibiotics by

generating persisters within a microbial community through

intercellular signaling.44,45 Communication molecules triggering

genetic programs across a population may elicit additional

synchronized behaviors, such as cell division, differentiation,

and aggregation.46–48 From an engineering perspective, we can

co-opt these chemical communication systems for synthetic

ecosystems. Using synthetic quorum sensing circuits, Basu

et al. generated cell communities that exhibited different spatially-

defined phenotypes in response to chemical gradients.49 These

circuits have been further developed for edge detection systems

that allow cells to sense the state of adjacent neighbors and respond

accordingly,50 as well as for macro-scale synchronization of

behavior across physical distances 1000 times greater than the

length of a cell.51 These examples of engineered synthetic

communities illustrate that controllable cell–cell signaling

can enable the design of even more complex systems.

Aggregation and physical structures

Metabolic exchange and intercellular interactions require cells to be

in close proximity. Cellular aggregation, by cell–cell contact or

generation of extracellular matrices (known as biofilms), is a

common strategy that natural microbial communities use to

increase their local cell density.52 Often, cell aggregates directly lead

to the formation of biofilms.53 Biofilm structures are particularly

common as they anchor communities to a surface, allowing

them to thrive more stably than in an otherwise mixed

environment. By strengthening the local interactions in a

community, these extracellular structures further enrich

for ecosystems that behave cooperatively and in concert.54

Biofilms also decrease permeability of toxins and antimicrobial

compounds thereby protecting the entire community.55

These structures provide tantalizing opportunities for synthetic

engineering. For example, Brenner and Arnold developed an
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engineered biofilm community with increased cooperative

growth and resilience to fluctuating environments.56 These

systems should be further engineered for directed reciprocity

– the ability for individuals to recognize and foster cooperative

partners. Directed reciprocity is often found in naturally structured

communities such as plant-mycorrhizal ecosystems57 and other

symbiotic systems.58

An extreme case of cell–cell association is endosymbiosis.59

The engulfment of one cell by another and the sustainment of

such association can lead to the development of complementary

physiologies. It is thought that eukaryotic organelles such as

the chloroplast and the mitochondria were the result of

endosymbiosis.60 Metabolic interdependency of endosymbionts

often rely on exchange of essential metabolites (e.g. amino acids)

as is the case for insect endosymbionts such as Tremblaya &

Moranella in mealybugs,61 Buchnera in aphids62 and Sulcia in

cicadas.63 While these systems clearly present fascinating examples

of extreme interdependency, we have yet to fully understand

the evolutionary processes that lead to endosymbiosis.64

Therefore, forward engineering of such systems remains a

significant challenge.

Mutation and gene flow

The genetic makeup of the cell is not static but subject to

constant change. In a microbial consortium, an individual’s

metabolic capabilities can change over time due to evolution

and horizontal gene transfer (HGT).65,66 Small changes to the

genome arise from mutations generated during replication or

from DNA-damaging agents. Larger changes may arise from

mobile genetic elements that move around the same genome

and between different genomes.66 Small-scale mutations (e.g.

point mutations, indels) generally affect the activity, specifi-

city, or expression of proteins, so they are more likely to

impact the cell’s physiology incrementally.67 Truly novel traits

rarely evolve independently and are more likely to be acquired

horizontally from another cell.66,68 HGT enables the cell to

adopt new traits that require large leaps in sequence

space, such as new biosynthesis capabilities. These processes

can occur via conjugation, natural transformation, recombina-

tion, or transduction.67 So what influences the rate of genetic

exchange in communities? Using comparative genomics, Smillie

et al. argued that shared ecology is the most important factor

that facilitates genetic exchange.69 The rate of HGT can also be

accelerated in structured environments when neighboring cells

are in close proximity and are more related phylogenetically.69

The level at which Darwinian selection occurs will affect

the distribution and abundance of metabolotypes in the

population. In order to effectively engineer ecosystems that

behave predictably and stably over time, we must be able to

either insulate the system from genetic mutations or harness

natural selection to help maintain the engineered and

desired state.

An ecosystem engineering example

Here, we provide an example of microbial community engineering

based on the parameters discussed above.We focus on biosynthesis

because it is an important component of metabolism. On the

population level, just as for individual cells, biosynthesis is

optimized relative to cost and utility.70 Redundant or unnecessary

biosynthetic pathways may reduce the metabolic efficiency of the

population and are likely removed through Darwinian evolu-

tion.59 Using comparative genomics, we can computationally

predict the biosynthetic capabilities of organisms that have

fully sequenced genomes. Presence or absence of genes needed

for biosynthesis of essential metabolites can be tabulated.

Using the Integrated Microbial Genomes (IMG) database

of sequenced organisms71 (3062 Bacteria, 121 Archaea, 124

Eukarya) and an algorithm for biosynthesis prediction, we

discovered huge variation in biosynthetic capabilities for

essential metabolites such as amino acids. The algorithm

annotates an organism’s biosynthetic capabilities based on

sequence homology of its genome to genes in established

databases.72–75 When plotting a histogram of organisms that

are capable of biosynthesizing zero to all 20 standard amino

acids, we find a wide distribution (Fig. 3a). The Bacteria

domain tends to have organisms that on average can comple-

tely biosynthesize 7.9 out of 20 amino acids de novo. The

average is 8.3 amino acids for Archaea and 4.1 for Eukarya.

The histogram for Bacteria seems to be bimodal (Fig. 3a),

suggesting that further classification is needed. Organisms

in the Archaea domain on average have a slightly higher

biosynthetic range for amino acids. This perhaps is due to

their more ancient origin as a domain. Unsurprisingly, organ-

isms in the Eukarya domain appear to make fewer amino acids

since they derive most essential amino acids from nutrient-rich

diets. As a reference, humans can only make 10 out of the 20

amino acids. It is important to note that these computational

estimates of prototrophy are likely to be at the low end. More

accurate comparative genomic analysis using better populated

and more annotated databases will likely identify more biosyn-

thetic genes. Nonetheless, the observation that most organisms

cannot make all of their essential metabolites importantly high-

lights the interrelatedness of ecosystems. For each amino acid, we

can further analyze whether the full biosynthetic pathway is

intact across different organisms (Fig. 3b). We find that glutamic

acid (E), glycine (G), and asparagine (N) tend be synthesized in

most organisms while tyrosine (Y), phenylalanine (F), lysine (K),

and histidine (H) tend to be made in few organisms. These trends

appear to hold across Bacteria, Archaea, and Eukarya suggesting

more universal processes at play. It is interesting to note that the

more infrequently synthesized amino acids are also more costly

to produce than those that are synthesized by most organisms,

suggesting a level of cost-to-utility optimization.76

Amino acid exchange has in fact been used to build synthetic

microbial ecosystems. Hosoda et al. built a syntrophic cross-

feeding community composed of E. coli strains that were either

auxotrophic for isoleucine or leucine.77 Wild-type E. coli

(e.g. K12 lineage) can normally make all 20 amino acids, but

when genetically manipulated can be made auxotrophic

(i.e. DilvE, or DleuB). Neither cell-type is able to grow indepen-

dently, but when placed together in sufficient abundance will grow

synergistically. Such a system has also been built to exchange

arginine and tyrosine between engineered yeast strains.78

Wintermute and Silver more systematically quantified this

syntrophic exchange using 46 auxotrophic E. coli strains to

generate 1035 cross-feeding interactions.79 Metabolites that

exchanged across different biosynthetic pathways led to more
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growth than those that exchanged along the same pathway.

By examining the energetic cost and benefits of metabolite

exchange, it was determined that syntrophic pairs achieved

higher growth when the exchanged metabolite is less expensive

to produce and is required in low amounts.79 These and other

design principles enable us to model the effects of metabolite

exchange and supply on biomass generation for forward

engineering. Therefore, amino acids are a versatile set of

metabolites whose exchange can enrich for consortium-level

associations. Interdependencies can be engineered by exploiting

biosynthetic configurations of these essential metabolites,

which can further be tuned with transporters systems. These

engineered communities present a framework for program-

ming structures and dynamics into microbial ecosystems and

serve to improve our ability to engineer metabolism at the

population-level.

Theoretical and quantitative models

Theoretical and quantitative models are valuable analysis tools for

studying natural and synthetic microbial ecosystems.80,81 While

numerous important contributions have been made in this area,

they have been for the most part limited by analytical, computa-

tional or algorithmic complexity. Since natural ecosystems are

highly heterogeneous and nonlinear, molecular-resolution simula-

tions of population-level interactions remain infeasible with current

computational resources. Nonetheless, significant progress has been

made for in silico reconstruction of cell physiology.82 Scaling these

Fig. 3 Diversity of amino acid biosynthetic capabilities across all sequenced organisms from the Integrated Microbial Genomes (IMG)

database,71 separated based on the three domains (Bacteria, red, top panel; Archaea, blue, middle panel; Eukarya, orange, bottom panel). (a)

Predicted frequencies at which species have the ability to synthesize zero to all 20 standard amino acids. (b) For each amino acid, frequencies at

which complete biosynthetic pathways are found across each domain are shown in solid colored bars (Bacteria, red, top panel; Archaea, blue,

middle panel; Eukarya, orange, bottom panel). White bars indicate fractions in each domain where one or more biosynthetic gene is missing. Gray

bars indicate unknown annotations.
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models from single cells to ecosystem, however, often demands

a compromise in generality. Certain models may highlight

individual population-level behavior better than others, but

are doing so by sacrificing consideration of another important

parameter. Here, we describe four classes of quantitative

models that have been developed for understanding microbial

ecosystems (Fig. 4) and highlight the importance of each.

Dynamic models

Dynamic models are used to predict changes in a system as a

function of time. They can be used at various scales from

individual metabolites, to proteins, all the way to groups of cells.83

In general, concentration or abundance of each component in the

system is tracked over time as they interact with one another. In

dynamic models, every process in the system is described by a

differential equation. Variables in the equations represent the

time-varying parameters being modeled. Coefficients in the

equations define the type (e.g. positive or negative) and

strength of each interaction. The classical example of such a

model is the Lotka-Volterra predator-prey system.84 In this

system, two subpopulations exist, the predator and the prey.

The predator consumes the prey, which leads to depletion of

the prey population. A significant depletion of the prey

population leads to starvation and decline of the predator

population. When the predator population is low, the prey

population is then able to thrive, thereby bringing the ecosystem

through cycles of boom and bust. The dynamic model is able

to capture the expected phasic oscillation in abundance of

predator and prey subpopulations and determine parameters

in which such associations may exist (Fig. 4a).85 This model can

be scaled to whole populations as long as proper assumptions

are made (e.g. linear vs. nonlinear parameter relationships). For

example, dynamic models have been successfully applied to

study macro-scale systems such as freshwater lake ecosystems.86

These models also enable perturbation studies where starting

conditions (such as population size) can be varied, and solutions

are obtained. The largest limitation to these models is that

analytical solutions for most nonlinear differential equations

with more than two variables are not readily available. Numerical

solutions require additional mathematical and computational

tools that need to be further developed. Nonetheless, these models

are helpful for us to develop first order intuition about the

dynamics of the system.

Stoichiometric metabolic models

Stoichiometric models have been developed to study meta-

bolism at the cellular level.87 These models describe metabolism

of individual cells using matrices containing stoichiometric

coefficients of all metabolic reactions and sets of optimization

constraints. Stoichiometric representation of metabolism can be

Fig. 4 The four main classes of quantitative models that are used to studymicrobial ecosystems. (a) Kinetic models describe changes in system variables

(e.g. abundance) with simple differential equations that can exhibit interesting dynamics such as oscillations and limit cycles. (b) Stoichiometric models

can be applied to study optimal metabolic flux using objective functions to guide the design of intercellular metabolite exchange. (c) Evolutionary games

can be used to analyze phenotypic strategies within a microbial community using payoff calculations. These models aid in elucidating key variables that

influence the domination or coexistence of microbial strategies. (d) Digital evolution systems help to simulate microbial evolution, traversal of fitness

landscapes, development of complex traits, and contributions of epistatic and pleiotropic effects to fitness.D
ow

nl
oa

de
d 

on
 2

5 
Se

pt
em

be
r 

20
12

Pu
bl

is
he

d 
on

 2
2 

M
ay

 2
01

2 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

2M
B

25
13

3G

View Online

http://dx.doi.org/10.1039/c2mb25133g


2476 Mol. BioSyst., 2012, 8, 2470–2483 This journal is c The Royal Society of Chemistry 2012

analyzed by various approaches88,89 such as Flux Balance

Analysis (FBA).90 In contrast to dynamic models, FBA assumes

that the system is at steady state such that all metabolite

concentrations are time-invariant. This assumption is likely valid

for cells grown in exponential phase.91 The solution to the system

is described by a series of steady state fluxes for each reaction. By

combining all possible fluxes, we can generate a multidimensional

flux space that describes the entire metabolic capacity of the cell

(Fig. 4b). An objective statement is used to define a given flux or

criterion, such as flux to biomass (approximating growth rate),

for which the multidimensional flux space can be optimized.

Through linear optimization, the model predicts metabolic fluxes

that maximize the objective function (e.g. biomass). This model

has been extensively applied to in silico metabolic reconstruction

of a variety of organisms.18–22 Stolyar et al. used a FBA model

to describe a methanogenic community of M. maripaludis and

D. vulgaris that exchanged metabolites hydrogen and formate.92

The metabolisms of the two strains are divided into two separate

compartments that exchange metabolites via a third common

compartment. This model successfully predicted the ratio of

M. maripaludis to D. vulgaris during growth and suggested that

hydrogen was essential for syntrophy while formate could be

removed from the co-culture interaction.92

Two developments have greatly improved stoichiometric

models of microbial communities: the application of multi-level

objective statements,87,93 and inclusion of dynamics.94Multi-level

objective statements can be formulated to describe different and

potentially competing flux conditions. This approach has been

used to model synthetic ecosystems of three or more members,

where objective statements are defined separately for both the

strain and the community.93 By simultaneously optimizing these

objective functions, the model captures the selective forces that

act on individuals and the community. For example, growth

of individual species can be sacrificed to promote maximal

community growth.93 Thus, models with multi-level objectives

more accurately describe metabolite exchange. To account for

dynamics in the system, population abundance and metabolite

concentrations can be separated into different FBA models and

solved independently at every time step in an approach called

dynamic multi-species metabolic modeling (DMMM).95 As sub-

strate concentrations change over time, DMMM is able to adjust

the substrate utilization mode of each strain to the present

conditions by switching to the appropriate stoichiometric matrix.

This method is able to capture scenarios of resource competition

and identify metabolites whose limited exchange affect popula-

tion dynamics.95 These and other stoichiometric models, such as

elementary mode analysis (EMA),96 enable full-scale quantitative

models of ecosystems that are predictive and important for

forward engineering.

Evolutionary game models

In contrast to dynamic and metabolic models, evolutionary

game models focus on describing strategic decision-making of

interacting agents and successfulness of their strategies

(Fig. 4c).97 Rules of the evolutionary game define the payout

that each player receives for every possible combination of

strategies (e.g. cooperate, cheat). Each player’s payout represents

the individual’s fitness, and the highest value ‘‘wins’’ the game.

For example, microbial phenotypes can often be described as

altruistic (A) or selfish (S); evolutionary games can model how

such behaviors arise.97 While we would assume that selfish

exploitation of the environment may be a winning strategy, the

natural world is paradoxically filled with organisms that

exhibit cooperative behavior.98 For microbial communities,

the fitness of every individual in a population is determined by

the net payout from all pairwise games with all other individuals.

The initial proportion of individuals adopting a given strategy is

an input for this model. These games are then iterated over time

with a given strategy changing in abundance based on the fitness

of individuals who hold the strategy compared to the average

population fitness. As the marginal cost of cooperating and

benefit of cheating lead to changing payouts, the two strategies

will dynamically vary and affect the outcome of the game.99

From these models, we find that populations that are dominated

by altruists will often have a higher fitness than those dominated

by selfish exploiters.100

For microbial ecosystems, evolutionary game theory models

allow us to investigate how system parameters impact micro-

bial interactions and dynamics of competing strategies. These

models have been used to predict the evolutionary steady state

of engineered yeast populations that exhibit altruistic or selfish

strategies through the snowdrift game.101 In such a game, the

altruists secrete an invertase enzyme that hydrolyses a poly-

saccharide to generate diffusible glucose products that are

available to the entire population. The selfish individuals forgo

the cost of secreting the enzyme, but rely on the glucose

generated by the altruistic strains. Modulating the cost of

cooperation resulted in shifts in the final population structure.

Altruists dominated when cost of cooperation was very low.

Altruists and cheaters coexisted at median costs of cooperation,

while cheaters dominated at high costs.101 To further take into

account spatial structures, agent-based game models are used to

restrict interactions to individuals in close physical proximity.102

Clusters of cells that exhibit cooperative strategies will derive

more benefit due to spatial confinement, and thus will be

further enriched in the population. These and other evolutionary

game models100 will be important quantitative tools to guide

ecosystem engineering.

Digital evolution

Long-term bacterial evolution experiments have been used to

track how phenotypes and genotypes change in a constantly

selective environment.103 Similarly, in silico simulations of

evolution have been developed (Fig. 4d).104 Earlier forms of

these simulations derive from cellular automata approaches,

such as the Game of Life.105 Cells in the cellular automata live in a

two-dimensional environment. Reproductive success or cell death

is governed by the density and configuration of the local popula-

tion. Discrete time steps are iterated over the population to

simulate the process of life. A more sophisticated implementation

of digital evolution, called Avida, has been described.106 Avida is

inspired by an earlier system Tierra, in which digital organisms

contain computer programs that compete for Central Processing

Units (CPUs) and access to memory in order to reproduce.107 In

Avida, digital organisms have their ownmemory space and virtual

CPUs to perform tasks.108 Each digital organism has a circular
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‘‘genome’’ composed of a collection of 26 possible discrete

basic programs (Nand, IO, swap etc.) that are executed in

series. When certain combinations of these basic programs are

executed in the correct order, one of several logic operations is

performed. Strains able to execute higher complexity opera-

tions are rewarded with more energy and therefore replicate

faster. As cells replicate, mutations are introduced, which

result in programs being added, removed, or moved. This

leads to new operational capabilities. Because the history of

each organism’s genotype and phenotype are chronicled,

digital evolution models enable better understanding of how

individuals traverse a fitness landscape as complex traits

evolve. These artificial life models also enable the reversion

of individual and combinations of mutations to study epistasis.

Key conclusions106 reinforced by these models include: (1)

deleterious mutations may be needed to develop complex traits;

(2) even though complex traits are fragile to mutations, they

fix in the population because they provide significant fitness

benefit, and (3) development of complexity requires selection

of traits with intermediate complexity to allow gradual transition

through the fitness landscape. Since complex phenotypes are a

hallmark feature of microbes, this framework will likely provide

useful insights to improve engineering of ecosystems through

digital simulations. These approaches are now being extended

to simulation population-level behavior.109,110

Experimental tools

Over the last decade, the field of microbial ecology has been

swept by a wave of new technologies, significantly reshaping

the traditional investigative approach. These advances have

centered on key developments inmicrofabrication, high-throughput

Fig. 5 Experimental tools enable engineering of microbial ecosystems from the population level down to the DNA level. In vitro tools such

microfluidics and microchambers or in vivo mice models enable precise control of the environment. High-throughput sequencing and

transcriptomics enable parallel interrogation of phylogeny, composition, and gene expression of cell populations. Techniques such as multiplexed

genome engineering and transposon mutagenesis enable forward engineering and accelerated evolution of cell populations at the genetic level. New

genetic circuitry and synthetic biology frameworks enable the development of multi-component genetic programs that are executed across

populations of cells.
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sequencing, genome engineering, and synthetic circuit design.

These new methods allow for better in vitro and in vivomodels,

culture-independent identification and quantification of individual

species across populations, and generation of targeted genotypes

for functional studies (Fig. 5). Forward engineering of synthetic

microbial ecosystems will rely heavily on these techniques.

In vitro models

Going beyond traditional cultivation techniques using petri

dishes and culture flasks, advances in microfabrication and

microfluidics have produced a variety of cheap lab-chip devices

that can be used to cultivate and analyze microbes grown in

massively parallel micron-sized chambers and channels.111,112

These devices are particularly useful for generating physico-

chemical conditions found in heterogeneous ecological niches to

study behaviors such as quorum sensing or antibiotic susceptibility.

For example, Zhang et al. developed a microfluidic chip that

contained 1200 interconnected wells to probe the development of

ciprofloxacin antibiotic resistance.113 Local antibiotic gradients

generated ‘‘Goldilocks points’’ in the microchamber where motile

strains gathered and developed notable ciprofloxacin resistance

(10 mg ml�1) – 200 times the minimum inhibitory concentration.

This phenomenon was not observed in the absence of such

antibiotic gradients when grown in standard flasks as no resistance

strains developed. This work highlights the importance of local

heterogeneity in the evolution of microbial populations and

development of antibiotic resistance.

Microfluidic chambers can also be used to study chemical

signaling and nutritional cross-feeding between different mi-

crobes. Kim et al. developed a fluidic chip that contained

arrays of spatially separated micro-wells with selectively

permeable bottoms placed over a common liquid reservoir.114

Through size exclusion, metabolites could diffuse to neighboring

wells while the bacteria producing them remained in each well.

Using this system, the authors built a synthetic consortium of

three bacteria, Azotobacter vinelandii, Bacillus licheniformis, and

Paenibacillus curdlanolyticus, which normally do not grow

together in nature. In a defined environment that is nitrogen

and carbon depleted, and in the presence of antibiotics, the

consortium exhibited reciprocal syntrophy because each

species performed a specialized function that benefited the

entire group. A. vinelandii fixed gaseous nitrogen into amino

acids. B. licheniformis degraded the antibiotic penicillin.

P. curdlanolyticus generated carbon sources needed by the

consortium by degrading carboxymethyl-cellulose. In this

co-culture, spatial structures and local interactions amongst

the members defined the viability of the ecosystem. These

interactions can be further elucidated at the single-cell level by

using agarose tracks in channels that are the width of one

cell.115,116 Through optical microscopy, growth of individual

cells by linear extension along the channel can be tracked over

40 generations. Syntrophic exchange between strains of E. coli

auxotrophic for different amino acids enabled growth in

separate parallel channels.115 Highlighting the importance of

locality in syntrophic exchange, the co-culture growth rate

was shown to decrease sharply when the distance between

complementary strains in neighboring channels increased by

more than a few cell lengths.

In addition to microchambers and microchannels, microdroplet

technology is also useful in probing interspecies interactions.117

Groups of cells can be encapsulated in monodispersed aqueous-

phase droplets using a T-junction microfluidic channel with an

oil-phase. Through syntrophic cross-feeding, auxotrophic E. coli

strains can grow in these microdroplets and be analyzed by

microscopy.117 These approaches will improve cultivation of new

microbes by recapitulating microenvironments in which otherwise

unculturable microbes can grow in the presence of metabolically

compatible partners.

In vivo models

Experimental models that recapitulate natural environments

lend crucial insights into structure and function of microbial

communities in their native habitats. Tractable live animal

models, such as gnotobiotic germ-free (GF) mice, have been

used extensively to investigate the relationship between the

mammalian gut and the resident microbial community.118

Gnotobiotic mice can be inoculated with defined and sequenced

microbes that are trackable to investigate processes of gut

colonization, food metabolism, and community stability. In

one such recent study, Faith et al. introduced 10 representative

strains of the human microbiota into GF mice that are fed with

defined diets of macronutrients.119 Four classes of foods were

given to mice: proteins, fats, polysaccharides, and sugars. The

10-member microbial consortium was tracked by analysis of

faecal samples after transition to different diets. The researchers

found that a simple linear model could predict over 60% of the

variation in species abundance due to diet perturbations. The

use of synthetic microbial communities in live animal models

provides a feasible way to untangle the web of complex inter-

actions that may go on in the population. Furthermore, in vivo

mice models are amenable to genetic modifications to produce

important disease phenotypes such as ob/ob120 or Tlr2(-/-),121

which can be used to tease out host-microbe interactions.

Simple evolutionary models of antibiotic antagonism, such

as the classic non-transitive rock–paper–scissors (RPS) game, have

also been demonstrated by studying engineered E. coli strains in

GF-mice. Kirkup and Riley122 used three types of strains: one that

produces bactericidal colcins (P) that preferentially kill off sensitive

strains (S) versus resistant strains (R). Sensitive strains can

outcompete resistant strains, which in turn can outcompete

colcin-producing strains. GF-mice associated with the microbial

consortium showed cycling between the three phenotypes,

which illustrated the RPS model and the in vivo role of colcin

as an antibiotic. More interestingly this synthetic consortium

model suggests that antibiotic-mediated antagonism can serve

to promote microbial diversity in the mammalian gut.

Population quantification techniques

Precipitous reduction in cost and exponential growth in

throughput of next-generation DNA sequencing technologies

have revolutionized molecular biology.123 Sequencing has been

used extensively for cataloging the composition, abundance,

and metabolic potential of microbes from a variety of natural

environments such as soil,124 ocean,125 acid mines,126 and the

human body.127 Molecular barcoding allows large numbers of

samples to be multiplexed and can be combined with time-series

D
ow

nl
oa

de
d 

on
 2

5 
Se

pt
em

be
r 

20
12

Pu
bl

is
he

d 
on

 2
2 

M
ay

 2
01

2 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

2M
B

25
13

3G

View Online

http://dx.doi.org/10.1039/c2mb25133g


This journal is c The Royal Society of Chemistry 2012 Mol. BioSyst., 2012, 8, 2470–2483 2479

measurements to capture temporal changes across the entire

population.128,129 Furthermore, transcriptome sequencing

methods such as RNA-seq allow us to measure detailed

transcriptional profiles of consortium members under different

environmental conditions.130 Resequencing genomes from

long-term evolution studies have also increased in popularity.103

These investigations help to identify genetic mutations that arise

due to adaptation to new environments131,132 and help to reveal

genetic heterogeneity within the population.133 Goodarzi et al.

developed the genetic footprinting technique, array-based

discovery of adaptive mutations (ADAM), which enabled

selective identification of mutations that provide a competitive

advantage within a cell population.134 Combining sequencing

and functional measurements, this method reconstructs beneficial

phenotypes to increase the scope of adaptive lab evolution

studies and enhance understanding of genetic interactions in

complex populations.

Genome engineering

Construction and engineering of sophisticated synthetic ecosystems

require facile modification of microbial genomes. Transposable

elements have long been used as an efficient way to produce

mutants of various phenotypes by random insertion into the

genome.135 Libraries of such transposon-mutated strains

diverge in genotype and phenotype, but when pooled together

can begin to resemble a microbial consortium. Using high-

throughput DNA sequencing, large libraries of transposon

mutants can be interrogated efficient. Goodman et al. combined

the use of transposon mutagenesis, high-throughput sequencing

and gnotobiotic mice in a technique called Insertion Sequencing

(IN-Seq) to probe the function of Bacteroides thetaiotaomicron

in the mouse gut.136 Populations of B. thetaiotaomicron cells

that were mutated by Himar1 mariner transposons were

assessed by Illumina sequencing. The modified Himar1 inverted

repeat sites contained MmeI-compatible sequences. Upon

MmeI digestion of genomic DNA from the mutant population,

high-throughput sequencing can be used to determine two 18-bp

pairwise genomic fragments that correspond to the transposon

insertion. Abundance levels of each mutant can be tracked and

distinguished from one another, as well as from defined microbes

in other phylum such as Firmicutes or Actinobacteria. Other

similar techniques for high-throughput transposon sequencing

include Tn-seq,137 high-throughput insertion tracking by deep

sequencing (HITS)138 and transposon-directed insertion-site

sequencing (TraDIS)139 have also been developed.

Often, engineering members of a synthetic consortium

requires precise genetic manipulation of the genome instead

of random mutagenesis. Recent advances in oligo-mediated

genomic engineering such as Multiplex Automated Genome

Engineering (MAGE) has enabled efficient, parallel, and site-

specific modification of genomes across many target sites.140–142

By using pools of oligos, MAGE can generate genetic diversity in

the population at a rate of 4.3� 109 modified bases per day, which

enables combinatorial generation of divergent and complementary

phenotypes within population clades.140 MAGE relies on the

transformation of small chemically synthesized oligonucleotides

(B50–90 bp) into the genome that then proceed to integrate into

the chromosome during replication in an Okazaki-like fashion.

Single-stranded DNA binding proteins and recombinases greatly

facilitate this process and are often found as a part of viral

integration machinery.143 Rapid generation of cells that exhibit a

variety of physiologies is not only feasible but can be automated.

Therefore, these approaches are crucial to the construction of

viable and stable synthetic communities. Oligo-mediated genomic

engineering has shown promise in a variety of organisms including

Escherichia coli,144 Pseudomonas syringae,145 Pantoea ananatis,146

and other gram-negative bacteria,147 as well as Mycobacterium

tuberculosis,148 lactic acid bacteria,149 and yeast.150

Synthetic computing circuits

Construction of genetic circuits that perform computational

operations has been a long-standing goal in synthetic biology.151

Recent advances in genetic circuit design have now been

extended to libraries of cells, which can be modularly combined

to perform basic logic functions. Earlier work demonstrated that

population-level behavior can be programmed using feedback

genetic circuits and quorum sensing molecules152,153 but needed

precise population-synchronization for robust behavior.154 More

recently, two groups developed multicellular computing

systems.155,156 Regot et al. constructed a library of engineered

yeast cell-types that could sense different extracellular input

signals such as NaCl, doxycycline, galactose, oestradiol and

produce chemical ‘wiring molecules’ such as pheromones to

communicate with one another.155 These cell-types were made

into AND and inverted IMPLIES logic functions to implement

Boolean operations. For example, Cell 1 when presented with an

input such as NaCl, will produce the wire molecule, pheromone,

which is received by Cell 2. Cell 2 will produce a detectable

fluorescence output only when it senses the pheromone and a

second input such as oestradiol. The NaCl AND oestradiol

operation is achieved with this two-cell implementation. By

combining different cell-types, the authors generated a variety

of logic gates (AND, NOR, OR, NAND, XNOR, XOR). More

impressively, complex circuits including a multiplexer and a 1-bit

adder with carry were built using additional chemical wires and

cell-types. Based on a similar design scheme, Tamsir et al.

constructed libraries of E. coli cells with simple NOR logic gates

and connected them using quorum sensing molecules.156 The

NOR gate was built using two tandem promoters that served as

orthogonal inputs to drive the transcription of a repressor

element. This simple implementation was used to build more

complex circuits, which the authors demonstrated by performing

logic operations on solid plates with different spatially defined

colony types.156 These results support the notion that cellular

consortia may be used to perform complex tasks more efficiently

than single-cell implementations, further advocating the develop-

ment of synthetic consortia as a platform technology.

Applications of synthetic consortia

Microbial consortia can potentially be programmed to perform

useful tasks in both natural and artificial environments at spatial

and temporal scales well beyond the capabilities of any individual

member. Numerous applications may warrant such systems,

ranging both in sophistication and in scale. Engineered microbes

have long been used for industrial production of chemicals and

pharmaceuticals.157 These reactions tend to occur in fermentation
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chambers using genetically identical strains. All multi-step

reactions need to be carried out intracellularly or would require

separate fermentation pipelines. For complex feedstocks such as

cellulosic biomass, single-strain fermentation reactions are unlikely

to suffice. On the other hand multi-species communities can

degrade these complex substrates efficiently.158 Thus, future

microbial fermentation systems are likely to shift to more

heterogeneous population of engineered strains with diversified

metabolic capabilities.159

Engineered consortia can be designed to degrade complex

feedstock while simultaneously producing valued products.

Using a symbiotic co-culture of engineered yeasts and Actinotalea

fermentans, a cellulolytic bacterium, Bayer et al. were able to

convert unprocessed switchgrass, corn stover, sugar cane

bagasse, and poplar into methyl halide, a biofuel precursor.160

A. fermentans fermented cellulose to acetate and ethanol, but

its growth was inhibited by these toxic waste products. How-

ever, engineered yeast was used to reduce acetate level by

utilizing it for energy to produce methyl halide through

heterologous expression of a methyl halide transferase. Thus,

interdependence was established between the two strains to

alleviate growth inhibition toward production of a biofuel.

This type of division of labor is a powerful approach for

processing complex substrates – a strategy commonly adopted

in natural microbial consortia.161

Applications in coordinated toxin detection and bioremedia-

tion may also benefit from synthetic consortia. By engineering

auto-synchronization in populations of oscillating cells, Prindle

et al. developed a liquid crystal display (LCD)-like macroscopic

clock that could sense arsenic concentrations and respond by

changing the oscillatory period.51 The researchers nested two

modes of cell signaling to expand the scale at which coordinated

events manifest across the population. Slower local synchroniza-

tion proceeded via a well-established quorum sensing genetic

circuit to form colonies called ‘‘biopixels.’’ Arrays of these small

colonies were synchronized across a large scale with a weaker but

faster redox signaling system using hydrogen peroxide. Using an

extra positive-feedback element that was linked to an arsenic-

responsive promoter, the oscillatory system became a macro-

scopic arsenic biosensor that fluoresced at different periods

depending on the arsenic concentration. By combining the two

modes of cellular communication across thousands of microwell

channels, the authors developed a proof-of-principle biochip that

may potentially be used as a handheld arsenic detector.

For applications in medical therapeutics, engineered microbial

gut consortia will likely be an important area of development.

Recent studies have highlighted the important role of human-

associated microbial communities in maintaining health and

causing diseases,162–164 especially in the gastrointestinal (GI) tract

where food and drugs are metabolized. The gut environment is

home to the highest density of microbes in the body (up to 1011

cells/gram) and irregularities in the microbial composition

are linked to diseases including Crohn’s,165,166 inflammatory

bowel disease,167 obesity,26 diabetes,168 infections,169 and

maldigestion.170 Traditional therapeutic strategies using probiotics

have failed to generate consistent results largely due to a lack of

understanding for the design principles needed to maintain

engineered microbes in vivo.New approaches in synthetic consortia

engineering will likely succeed where previous attempts have failed.

Few successes in this area are already encouraging. Steidler

et al. engineered an orally administered Lactococcus lactis

strain that excreted human interleukin-10 in the GI tract.171

This engineered probiotic strain reduced the degree of induced

colitis in mice models, paving the way for human clinical trials

for IBD.172 Saeidi et al. showed that engineered E. coli could

detect the human pathogen Pseudomonas aeruginosa via a

quorum sensing pathway.173 P. aeruginosa often colonize the

respiratory and GI tracts, leading to chronic and fatal diseases.

Upon pathogen detection, the programmed E. coli self-lyse

and release pyocin, a narrow-spectrum bacteriocin that kills

P. aeruginosa. In another study,174 the administration of non-

pathogenic engineered E. coli that communicate to coordinate

the secretion of cholera quorum sensing molecules (i.e. auto-

inducer-1) resulted in increased survival of murine models to

Vibrio cholera infection from 0% to492%. Future applications

of human-microbiome engineering may include enhancing

catabolism of troublesome but common metabolites (e.g. lactose

and gluten), precise microbial modulation of the immune system,

and removal of multi-drug resistant pathogens by selective

toxin release.

Concluding remarks

The prospect is bright for synthetic biologists to build ecosystem

that reproducibly exhibit complex behavior. Yet there remain

many challenges ahead that reflect our incomplete understanding

of the many governing principles that underlie microbial

physiology, ecology, and evolution. A better working knowl-

edge of the different parameters that drive social interaction in

cell populations will be needed. As most intercellular interactions

exhibit non-linear relationships based on spatial, temporal,

thermodynamic, and energetic constraints, we expect that

new theoretical frameworks need to be developed to describe

these complex, dynamic, and heterogeneous ecosystems.

New techniques that facilitate massively parallel synthesis,

engineering, and analysis of microbial consortia at single-cell

resolution will be critical for predictive programming of

synthetic communities. As we progress toward engineering

biological systems of ever-increasing sophistication, social and

ethical concerns surrounding the creation of non-natural life

forms and ecosystems will require open dialogue between

researchers and the public on the risks and rewards of these

activities in the post-Darwinian era of biology.
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