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Understanding themechanisms that generate variation is a common
pursuit unifying the life sciences. Bacteria represent an especially
striking puzzle, because closely related strains possess radically
different metabolic and ecological capabilities. Differences in pro-
tein repertoire arising from gene transfer are currently considered
the primarymechanism underlying phenotypic plasticity in bacteria.
Although bacterial coding plasticity has been extensively studied in
previous decades, little is known about the role that regulatory
plasticity plays in bacterial evolution. Here, we show that bacterial
genes can rapidly shift between multiple regulatory modes by
acquiring functionally divergent nonhomologous promoter regions.
Through analysis of 270,000 regulatory regions across 247 genomes,
we demonstrate that regulatory “switching” to nonhomologous
alternatives is ubiquitous, occurring across the bacterial domain.
Using comparative transcriptomics, we show that at least 16% of
the expression divergence between Escherichia coli strains can be
explained by this regulatory switching. Further, using an oligonu-
cleotide regulatory library, we establish that switching affects bac-
terial promoter architecture. We provide evidence that regulatory
switching can occur through horizontal regulatory transfer, which
allows regulatory regions to move across strains, and even genera,
independently from the genes they regulate. Finally, by experimen-
tally characterizing the fitness effect of a regulatory transfer on
a pathogenic E. coli strain, we demonstrate that regulatory switch-
ing elicits important phenotypic consequences. Taken together, our
findings expose previously unappreciated regulatory plasticity in
bacteria and provide a gateway for understanding bacterial pheno-
typic variation and adaptation.
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The acquisition of genes from nonparental lineages through
horizontal gene transfer (HGT) has been shown to transform

bacterial capabilities radically, influencing key processes, including
pathogenicity, antibiotic resistance, and utilization of novel energy
substrates (1–4). These striking findings have led many to believe
that changes in gene content underlie the rapid pace of bacterial
evolution (5, 6). However, an overlooked corollary of this ubiq-
uitous exchange of DNA (7, 8) is that noncoding regions can be
similarly subject to transfer and recombination, enabling rapid
rewiring of regulatory networks (9, 10). Consistent with this hy-
pothesis, recent studies have uncovered several cases of regulatory
rearrangements, whereby regulatory regions have “switched”
to nonhomologous alternatives with remarkable phenotypic
consequences (11–13). For example, the inversion of a single
promoter was shown to convert a commensal to a pathogen (12).
Similarly, in Escherichia coli, citrate utilization was shown to
evolve through promoter capture, enabling expression of an
otherwise silent transporter (13). These discoveries demonstrate
that regulatory “switching” to divergent alternative sequences is
possible and can produce functional transformations. Nonetheless,
it remains unclear whether these intriguing observations reflect

exceptional anecdotes restricted to highly mobile genes in unusual
strains or early representatives of a broader paradigm.

Results
Regulatory Switching in E. coli Core Genes. To assess the significance
of regulatory switching on bacterial evolution, we first considered
core genes, which are present in all members of a clade and typi-
cally encode basal cellular “housekeeping” functions. Core genes
are subject to strong purifying selection and are viewed as islands of
stability within the dynamic bacterial genome [although exceptions
exist (14, 15)]. Accordingly, regulatory switching in core genes is
particularly unexpected, and is also easily detectable against the
background of sequence conservation in coding regions.
We compared multiple sequence alignments of the 1,479 core

genes present in all 46 publicly available E. coli genomes and up to
300 base pairs of the upstream regulatory region for each gene. As
expected, the regulatory regions of most core genes are highly
conserved (median nucleotide identity of 94%); however, a signifi-
cantminority (13%) appear to be nonhomologous, sharing less than
50% nucleotide identity (Fig. S1). Because such poor conservation
is inconsistent with the traditional view that core genes are slow-
evolving (5), we investigated this divergent subpopulation further.
We first focused on hemH, as a representative of the non-

homologous upstream regulatory regions (Fig. 1A). hemH is a single
gene operon that encodes ferrochelatase, the terminal enzyme in
heme biosynthesis. hemH and its upstream gene, adk, display
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near-perfect conservation (>98% amino acid identity) across all 46
E. coli strains. However, the regulatory region between these genes
comprises a 155-bp region that can be classified into two distinct,
nonhomologous sequence types (less than 42% average pairwise
nucleotide identity between clusters). In contrast, within clusters,
there is almost perfect homology (>96% nucleotide identity). Thus,
hemH represents a canonical example of regulatory switching be-
tween two alternative, nonhomologous regulatory sequences.
To determine the overall prevalence of such switching among

E. coli core genes, we devised an algorithm that could system-
atically identify core genes with at least two distinct types of reg-
ulatory sequences (SI Text and Fig. S2). Remarkably, we found 166
unambiguous cases of regulatory switching (11% of all core genes
in E. coli). The vast majority (83%) of these divergent regions con-
tain bona fide promoters (16), as opposed to interoperonic regions,
which is significantly more than expected by chance (Fisher’s exact
test, P < 0.005), indicating that switching is enriched among pro-
moters, where it can facilitate regulatory rewiring.
Moreover, we found that regulatory switching often creates

new transcription factor binding sites. In 41% of the 44 diverged
core genes for which high-quality transcription factor binding site
annotations exist (17), alternative regulatory types were associ-
ated with divergent binding patterns (Table S1). For example, in
hemH (Fig. 1A), all type 1 sequences contain an experimentally
validated OxyR binding site (18) that is missing from all type 2
sequences. Type 2 sequences, instead, harbor canonical binding
sites for both ArgP and DnaA (Fig. 1).

Horizontal Regulatory Transfer as a Switching Mechanism. To elu-
cidate the evolutionary mechanisms that lead to regulatory
switching, we returned to our representative example of hemH
and mapped its regulatory regions onto the E. coli species tree
(Fig. S3; generated by concatenation of all core genes). We
found that the distribution of the alternative promoter types is
incongruent with the E. coli species phylogeny, consistent with
evolution by horizontal regulatory transfer (HRT) (Fig. 1B). For
the observed distribution to be explained by vertical transmission,
multiple independent genomic rearrangement events with identi-
cal boundaries would have to be posited, with independent ac-
quisition of the identical SNPs shared within each regulatory type;
clearly, this alternative interpretation is implausible.
To determine if horizontal transfer has an impact on other

regulatory regions in E. coli, we used the approximately unbiased
(AU) test, a maximum-likelihood–based methodology (19). Spe-
cifically, we statistically tested for incongruence between the to-
pology of the promoter sequences against the species tree. The
null hypothesis of this test is vertical inheritance (as defined by the
species tree); therefore, rejection of the null hypothesis is a strong
indication of HRT. We found that 51% of all core gene promoters
are incongruent with the species phylogeny, indicating that regu-
latory regions, similar to coding genes, are frequently transferred.
However, in many of these cases, the promoter and its upstream
gene might have been cotransferred. To tease out the cases in
which the promoters were transferred independent of their genes,
we compared the topology of each core gene with the topology of

Fig. 1. Regulatory switching and horizontal transfer
of the hemH promoter. (A) Operonic structure and
a representative multiple sequence alignment of the
regulatory region of hemH (20 of 46 sequences are
shown). The first line (E. coli K-12 MG1655) and the
last line (E. coli O157:H7 Sakai) depict the nucleotide
sequence of representative strains from each se-
quence type. Gray boxes represent gaps in the
alignment. The nucleotides are colored red (Ade),
yellow (Thy), green (Gua), and blue (Cys). Binding
sites of ArgP, DnaA, and OxyR are boxed. The num-
bered labels in the left margin indicate the two al-
ternative regulatory types that are found in hemH.
(B) Two types mapped onto the E. coli species tree
rooted with Escherichia fergusonii. Promoter type 1
is shown in red, and type 2 is shown in blue. (Scale
bar: nucleotide substitutions per site.) The patchy
distribution of these alternative sequence types is
inconsistent with vertical transmission.
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its associated upstream regulatory region (using the same meth-
odology described above, with more details provided in SI Text). In
the case of hemH, both the promoter history and the gene history
significantly differed from the species tree, yet their topologies were
not statistically different from each other. Therefore, we cannot
exclude the possibility that these two regions were cotransferred.
Nevertheless, for 32% of all promoters, we detected a clear signal
that they were transferred independent of the gene they regulate.

Intergenera HRT Between E. coli and Enterobacter. Given the fre-
quency of HRT among E. coli strains, we expanded our analysis
to investigate if HRT can cross species boundaries and discov-
ered intergenera HRT between E. coli and Enterobacter. As
shown in Fig. 2, we found that among 22 E. coli strains, the
leader sequence of the biosynthesis gene metE exhibits a greater
sequence similarity to the leader sequence found in Enterobacter
than to its homologs in more closely related E. coli strains. Al-
though most E. coli have a long leader sequence (169 bp),
a subset of E. coli (most of which are uropathogenic E. coli) has,
instead, a short (49 bp) AT-rich leader sequence that is shared
with Enterobacter. In contrast to this incongruent regulatory re-
gion, phylogenies of the surrounding core genes match the species
phylogeny, suggesting that the incongruence of the intervening
regulatory sequence is best explained by horizontal transfer of the
regulatory region alone (Fig. 2A). The direction of this regulatory
transfer is most likely from Enterobacter to E. coli, because other
Enterobacteriaceae species close to E. coli all harbor the long al-
lele (Fig. 2B). Furthermore, all of the short E. coli regulatory
alleles are nearly identical, suggesting a recent regulatory transfer.

Regulatory Switching Is Also Prevalent in the Accessory Genome.
Thus far, our analysis focused on core genes, for which regula-
tory switching was especially unexpected. Next, we examined the
prevalence of regulatory switching among all gene classes.
Among 2,286 noncore accessory genes in E. coli strain MG1655,
we detected a similar level of switching (11.8%) to that observed
across core genes in E. coli (11.2%). Moreover, we found that
switching occurs across all functional categories, including global
regulators (Fig. S4 and Table S2). The finding that global reg-
ulators exhibit regulatory switching is especially significant, be-
cause cis rewiring of a single regulatory protein could create
large-scale downstream effects in trans. We also found that reg-
ulatory switching occurs more frequently in signal transduction
pathways (Fisher’s exact test, P < 0.05). Regulatory switching in
signal transduction pathways could help these vital environmental
interfaces more rapidly align their response to environmental
conditions upon shifts in ecological niches.

Regulatory Switching Affects E. coli Promoter Architecture. To assess
the impact of regulatory switching, we first examined if promoter
switching is associated with changes in the positioning of the
gene transcription start site (TSS). To this end, we synthesized an
E. coli promoter library, which allows detection of TSS from
multiple bacterial strains in parallel. A similar approach was suc-
cessfully applied to study TSS composition in E. coli (20). After
filtering core genes for which the TSS could not be reliably de-
termined due to annotation biases, we were left with 822 core gene
clusters (SI Text). These core gene clusters were classified as either
switched (166 core gene clusters) or unswitched (656 core gene
clusters). From each core gene cluster, we selected at least two
promoter regions, leading to a total of 1,693 promoters. The se-
lected promoters were synthesized by Agilent Technologies using
the oligo library synthesis method (21). This library was trans-
formed into E. coli K-12 MG1655, and expression on LB was
measured using RNA-sequencing (RNA-Seq). Expression data
were used to accurately determine TSS positions of 485 promoter
sequences from 40 different E. coli. Orthologous TSS positions
were used to compute TSS divergence: average distance in base

pairs between TSSs of orthologous genes. The mean divergence
between switched orthologs was fivefold higher than that between
unswitched orthologs (P < 0.01; Fig. 3A). Switched orthologs also
exhibited significantly more TSS divergence than unswitched
genes when multiple TSSs in a single gene were taken into ac-
count (P < 0.03; SI Text). Based on our results, we conclude that
regulatory switching drives promoter architecture divergence.

Regulatory Switching Drives Expression Diversification of E. coli
Strains. To test if regulatory switching alters the transcriptional
response, we performed high-throughput RNA-Seq to compare
the expression patterns of two E. coli strains that occupy distinct
ecological niches: a gastrointestinal commensal (MG) and a uri-
nary tract pathogen (CFT). We measured gene expression levels
for all 3,293 orthologous genes present in both strains when
grown on either defined minimal potassium morpholinopropane
sulfonate (MOPS) media or pooled, sterile human urine (Fig.
S5). Despite their ecological differences and more than 5 My of
evolutionary divergence, most genes exhibited similar expression
between strains exposed to the same conditions (Fig. 3; MOPS:
R2 = 0.95, urine: R2 = 0.98). Nonetheless, as shown in Fig. 3, 266

Fig. 2. HRT between E. coli and Enterobacter. (A) Phylogenetic tree for
metR, metE, and the leader sequence of metE. Clades are collapsed into
triangles or marked by a square (which represents that all sequences are
100% identical). Enterobacter is shown in purple, and E. coli is shown in
green. For both protein-coding genes, E. coli and Enterobacter each form
a monophyletic group. In contrast, the phylogeny of the intergenic region is
incongruent with the phylogeny for the surrounding genes, suggesting
horizontal transfer of the intergenic region independent of the surrounding
genes. (B) Long and short regulatory alleles and their mapping onto the
Enterobacteriaceae species tree. The long regulatory allele is shown in red,
and the short regulatory allele is shown in blue. The phylogenetic pattern of
the long and short alleles is consistent with HRT from Enterobacter to E. coli.
The high AT content stretch of the short regulatory allele is marked in green.
(Scale bar: nucleotide substitutions per site.) Statistical support for the in-
ternal branches was computed using 100 bootstrap repetitions.
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genes in MOPS and 219 genes in urine exhibited statistically
significant and substantial (over twofold change) expression di-
vergence. The frequency of switched genes within this divergent
expression group was found to be threefold higher than in the
conserved expression group (Fig. 3B, Inset). The tendency of
switched genes to exhibit higher expression divergence was also
indicated by ∼1.4-fold higher median expression divergence
compared with unswitched genes (MOPS: P = 9.65 × 10−9, urine:
P = 6.75 × 10−5; Wilcoxon rank-sum test).
Notably, 45% of the genes exhibiting switching-associated ex-

pression divergence are condition-specific (i.e., their expression
diverges in one condition only) (Fig. 3D). Thus, switchingmay alter
the response of bacteria only in a subset of environmental con-
ditions. For example, condition-dependent expression divergence
was observed in genes belonging to the methionine biosynthesis
pathway (Fig. 3E). These genes exhibited similar expression levels
in both strains when grown on MOPS but displayed higher ex-
pression in the uropathogenic E. coli when grown on urine. Three

of these genes underwent switching, including the regulator of this
pathway (metR),metF, and the last enzyme in the pathway (metE),
which exhibited the highest expression divergence (up to 16-fold)
(Fig. 3E).

HRT Affects the Fitness of Pathogenic E. coli. The gene which exhibits
the greatest urine specific expression divergence, metE, is known
for its high sensitivity to oxidation (22). Consequently, cells ex-
posed to oxidative stress develop methionine auxotropy (23). This
sensitivity poses a challenge to uropathogenic E. coli, which is
often exposed to oxidative stress generated by host immune cells
(24). We reasoned that the switching observed in the regulatory
region of metE (common to all uropathogenic E. coli isolates)
might confer a fitness advantage under oxidizing conditions. To
test this hypothesis, we constructed an isogenic pathogenic strain
that was identical to its parent strain except that the short metE
regulatory allele was replaced with the longer ancestral allele
found in commensal E. coli. The resulting strain exhibited

Fig. 3. Regulatory switching drives expression diversification and adaptation of E. coli. (A) Switched orthologs are more diverged with respect to their TSS
position compared with unswitched genes. Expression diversification of E. coli strains grown on MOPS (B) and on pooled human urine (C). Each circle rep-
resents the average transcript level of an orthologous gene across three independent experiments. Genes that underwent regulatory switching are shown in
orange, and those genes not affected by switching are shown in blue. The black lines, estimated by locally weighted scatterplot smoothing regression, in-
dicate twofold change in expression between strains. (Insets) Level of regulatory switching in genes showing divergent expression vs. conserved expression.
(D) Expression of switched genes exhibiting condition-specific expression divergence. (E) Condition-dependent divergence of the methionine biosynthesis
pathways. Genes affected by regulatory switching are marked by orange arrows. Although both strains express the pathway in a similar manner when grown
on MOPS, the pathogenic strain shows up to 16-fold higher expression of the pathway when strains are grown on urine. (F) Replacement of the short metE
regulatory allele with the long ancestral allele renders the pathogenic bacteria more sensitive to oxidative stress. The strains were grown on MOPS media
without methionine. After 2 h, oxidative stress was induced by adding H202 to a final concentration of 1.5 mM (marked by an arrow). Filled circles (●) denote
CFT073 WT, and empty circles (○) denote CFT073 with a K-12 regulatory region. The data represent three independent experiments.
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a similar growth rate on MOPS media lacking methionine. In
contrast, under oxidative stress, this replacement strain exhibited
a marked growth defect relative to the WT strain harboring the
shorter metE allele (Fig. 3F). These results demonstrate that
a single regulatory switching event, in which the coding region
remains unmodified, can confer a significant fitness advantage.

Regulatory Switching Is Ubiquitous Across the Bacterial Domain. To
determine if regulatory switching affects other clades beyond
E. coli, we extended our analysis to nine additional taxa from
across the bacterial domain with diverse physiological character-
istics (Table S3). We found that all clades experienced switching,
highlighting the phylogenetic breadth of this phenomenon (Fig. 4).
Remarkably, the frequency of regulatory switching in core genes
varies by more than an order of magnitude, from 0.5% in Chla-
mydia trachomatis, an obligate intracellular human pathogen, to
more than 15% in Neisseria meningitidis, a highly recombinogenic
pathogen that causes meningitis and septicemia. The variation in
switching level among these bacterial clades could not be explained
by sampling bias (Fig. S6) or phylogeny (Fig. 4).
These findings raise the question as to what is driving variation

in switching levels. Donor accessibility, ecology, and recombination
efficiency were all found to affect gene transfer (25), and therefore
are expected to affect regulatory transfer. Indeed, the level of
switching is associated with the overall recombination-to-mutation
(r/m) ratio (Table S4). Specifically, species with low r/m ratios are
characterized by a low level of switching (e.g., C. trachomatis
and Mycobacterium tuberculosis), whereas species with high r/m
ratios are characterized by a high level of switching (e.g., Heli-
cobacter pylori and N. meningitidis). However, this factor alone
cannot explain the full extent of variation in the levels of regu-
latory switching. For instance, although Salmonella enterica and
E. coli exhibit similar r/m ratios (0.14 and 0.38, respectively), E.
coli exhibits more than a 10-fold higher level of regulatory
switching. This difference might stem from the different lifestyle
of the two species. Whereas S. enterica is an intracellular path-
ogen, E. coli is largely extracellular, and thus might be exposed to
more foreign DNA during the course of its infection. Another
factor that can affect the overall level of switching is the ability of
bacteria to acquire DNA from the environment. Indeed, the
highest levels of regulatory switching were found in the naturally
competent bacteria H. pylori and N. meningitidis. Future work is

needed to elucidate how mechanistic constraints and ecological
barriers affect regulatory switching.

Discussion
Our observation that core genes exhibit ubiquitous regulatory
switching contradicts the common assumption that core genes do
not play a role in diversification (5). Previous studies have focused
on protein-level conservation and overlooked regulatory switching
as an orthogonal source of phenotypic variation in core genes.
Switching enables a cell to bypass deleterious intermediates gen-
erated through the accumulation of point mutations, allowing
even essential genes, such as hemH, to undergo regulatory modi-
fication. By enabling a “quantum leap” between the fitness peaks
of functional regulatory elements, switching could facilitate effi-
cient exploration of alternative promoter architectures.
The molecular mechanism most likely underlying the bacterial

ability to switch from one regulatory sequence to another is ho-
mologous recombination. A short region of sequence identity is
required to initiate this mechanism, and its efficiency decreases
with increased sequence divergence between genomes (26, 27).
Because core genes are highly conserved both between strains and
often across distant species, they may enable regulatory switching
between otherwise diverged bacteria. In line with this view, we find
that 13.8% of the switched regulatory regions reside within a con-
served region in which both the upstream and downstream genes
are orthologous. Further support for the association between
conservation and in situ replacement is the observation that xen-
ologous recombination, the replacement of a gene by a distant
homolog, was previously found to be prevalent within conserved
operons (28). Of note, we expect regulatory switching to be even
more frequent than in situ gene replacement, because regulatory
regions are shorter than genes and can fit on a single E. coli re-
combination segment, which is, on average, 242 bp (SI Text).
We have shown that regulatory regions, similar to coding

regions of bacteria, can be subjected to recombination and ex-
change. Several theories have been suggested to explain the differ-
ential frequencies with which genes undergo HGT. For example,
the complexity hypothesis posits that HGT is rare in genes coding
for proteins with many interactions compared with those genes
coding for proteins with only a few interactions (29, 30). Other
studies have detected functional and ecological barriers to hori-
zontal transfer of protein-coding genes (25, 31). The barriers to
HRT remain to be discovered, leavingmany unanswered questions.
Is it restricted by the number of regulatory interactions? Is it pro-
moted by the availability of transcription factors that are shared
between the donor and the acceptor? The sheer increase in the
availability of fully sequenced bacterial genomes, together with the
development of more specific tools for HRT analysis, should shed
light on the evolutionary forces shaping the regulatory genome.
The ability of bacteria to tap a broad pool of regulatory sequences

suggests that in addition to an environment-specific metagenome,
there is an unexplored parallel pool of sequences, themetaregulome.
In response to environmental changes, bacteria not only acquire new
proteins; theymay also acquire novel regulatory sequences to enable
more appropriate control of their existing protein repertoire. Our
results demonstrate the importance of mobile DNA in regulatory
evolution, opening a new window for exploring the mechanisms that
bacteria use to respond to environmental changes.

Materials and Methods
Additional details are available in SI Text.

Regulatory Switching Pipeline. We detected orthologous genes using re-
ciprocal Translated BLAST (tblastx) (32) best hits with at least 95% amino acid
identity (for the core gene analysis; only genes that were shared among all
strains of a given species were considered). Next, we detected orthologous
gene clusters, requesting 90% identity among all members of a cluster. The
regulatory region of each gene cluster, defined as 300 bp upstream of the

Fig. 4. Regulatory switching is ubiquitous across the bacterial domain. The
bacterial species phylogeny based on 29 concatenated ribosomal proteins
obtained from a study by Williams et al. (37) is shown. Bars indicate the level
of regulatory switching observed across all genomes within each clade.
Numbers at the end of each bar correspond to the percentage of core genes
exhibiting regulatory switching. Gram-negative and Gram-positive taxa are
shown in purple and blue, respectively. (Scale bar: substitutions per site.)
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TSS, was extracted. Last, the orthologous regulatory regions of each gene
were clustered. Genes were considered switched if their regulatory regions
formed more than one cluster.

HRT Detection. HRT was detected by searching for statistical significant in-
congruence between the species tree and the regulatory region tree. Specif-
ically, maximum-likelihood trees were reconstructed using PhyML (33) with the
general time reversible model (34), and incongruence was tested using the AU
(19) test as implemented in CONSEL software (35). To test whether a core gene
and its regulatory region were independently transferred, we repeated this
procedure comparing the core gene tree and the regulatory region tree.

Promoter Library TSS Determination. We synthesized a library of 1,693 pro-
moters from 40 E. coli strains and used the RNA-Seq–based approach de-
scribed by Kosuri et al. (20) to determine the TSS of orthologous genes. For
each of the 485 genes expressed under the experimental condition, we
computed a distance score reflecting shifts in TSS positioning across strains.
A bootstrap-based approach was used to test whether TSS shifts were sig-
nificantly enriched among switched genes.

RNA-Seq. E. coli CFT073 and E. coli K-12 MG1655 were grown with shaking at
37 °C in 12 mL of MOPS media supplemented with 0.2% tryptone and 0.2%

glucose until the OD600 reached 0.2. Five milliliters of the bacterial media
was then passed through a 0.2-mm pore-sized filter and resuspended in
either urine (pooled from six healthy volunteers) or MOPS. The resus-
pended bacteria were grown for an additional 15 min with shaking at
37 °C and then harvested. Detailed information and sequences are
available in the Gene Expression Omnibus (GEO) database (accession
no. GSE59468).

Allelic Exchange and Exposure to Oxidative Stress. MetE allelic exchange was
achieved by using the λ-red recombination system (36). For the oxidative stress
experiments, bacteria were grown for 2 h on minimal MOPS media with 0.2%
glucose. After 2 h, H2O2 at a final concentration of 1.5 mM was added to the
culture and growth was monitored.
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1. Escherichia coli Analysis
1.1. Detecting the Genes Comprising the Core Genome of E. coli. To
infer the core genome of E. coli, we analyzed 46 E. coli strains,
including eight Shigella strains that are obligate intraintestinal
pathogens belonging to the E. coli species (the full list is pro-
vided in SI Text, section V). E. coli orthologs were identified
using pairwise reciprocal Translated BLAST (tblastx) best hits
(1) against the K-12 MG1655 reference strain. Based on these
homology search results, we identified the E. coli’s core genome
(i.e., the set of genes present in all strains of a given species, with
high sequence conservation). We demanded at least 95% amino
acid sequence identity for the region of homology identified by
tblastx as high-scoring segment pairs (hsps). Tblastx, rather than
Protein BLAST, was used to improve the sensitivity of orthology
detection, which is especially important for low-quality genomes.
Because the hsp may be only a fraction of the total length of
a protein, we also required that the length of the hsp, excluding
gaps, should be longer than 50% of the total query length. We
additionally demanded that the length of the putative ortholog
would not differ by more than 20% from the length of the query
sequence. To ensure high conservation among all orthologs within
each orthologous group, we used Cluster Database at High Identity
with Tolerance (CD-HIT) (2) to filter out all core clusters in which
some members show less than 90% nucleotide identity. Such an
approach was previously shown to maximize specificity and ensure
proper ortholog detection (3). Finally, we filtered out all core
clusters that potentially include paralogous genes. Potential pa-
ralogous genes were defined as cases in which two different genes
in K-12 were mapped, using tblastx, to the same protein.

1.2. Reconstructing E. coli’s Core Regulatory Regions Database. Be-
cause there might be changes in core gene boundaries and length
that are the result of using different annotation programs for dif-
ferent strains rather than bona fide sequence changes (4), we
performed several steps of preprocessing of the data before
aligning them. These steps ensure that the variation in the regu-
latory regions we detect is not biased by the annotation method.
First, a regulatory region is defined as the 300 base pairs imme-
diately upstream of the transcription start site (TSS) of a gene. This
definition is frequently used in regulatory studies of bacteria (5, 6).
For each core gene cluster of orthologs, we performed the

following steps:

i) Extract the gene and the 300 base pairs upstream to its TSS.
ii) Remove the length of the longest gene from the 3′ prime of

all of the sequences in the cluster, thus removing any se-
quence that is suspected of being part of the coding core gene.
Differences in gene lengths commonly reflect differences in
the annotation of TSSs. This procedure ensures that the reg-
ulatory region we analyze is upstream of all potential TSSs.

iii) Align the regulatory regions with MAFFT (7), trim off in-
dels that are at the 3′ prime and 5′ prime edges of the
sequences, and unalign the resulting sequences (by removing
all indels). This step is a data cleaning step, which ensures
that all of the regulatory regions in each cluster span homol-
ogous regions within their genomes.

iv) The resulting sequences are realigned with PRANK (3), an
indel-sensitive alignment program. The region obtained can
include the promoter of the gene, its 5′ UTR, and also parts
of the upstream coding gene. Note that by using this un-
biased approach to regulatory region definition, we can also

detect changes in operonic structure that might influence
gene expression.

1.3. Regulatory Regions Clustering. For each orthologous group, the
unaligned regulatory sequences were clustered at the identity
level of 80% using CD-HIT (2). Because clusters that contain only
a single sequence may reflect sequencing errors, when counting the
number of clusters for each core gene, we only counted clusters with
at least twomembers.Wealso required that the divergence between
clusters would be at least 1.5-fold higher than the divergence within
clusters. This criterion ensures that the clusters are fundamentally
different, and therefore are likely to possess different regulatory
properties. Cluster divergence is calculated based on the PRANK
alignment of the regulatory regions. Of the 1,479 orthologous
groups tested, 166 were characterized by two or more clusters. We
term these groups diverged regulatory core genes or “switched
genes.” We tested how many of these diverged regulatory core
genes are the first gene in their harboring operon in K-12. Operonic
structures were taken from RegulonDB (8). Of the 166 switched
genes, 138 were first in their operon. This rate is significantly higher
than the background rate of 865 (of 1,479) total core genes that are
first in their operon (Fisher exact test, P < 0.005).

1.4. Orthology Surrounding Switched Regulatory Regions. To de-
termine if the genes adjacent to core genes are also orthologous,
we extracted the genes upstream of each core gene cluster and
clustered them using CD-HIT. We considered an upstream
cluster to be a cluster of orthologs if at least 45 of the 46 genes
exhibited at least 90% nucleotide identity.

1.5. Detection of Transcription Factor Binding Sites. Known tran-
scription factor binding sites (TFBSs) of E. coli model strain
MG1655 K-12 were downloaded from RegulonDB (8). Pre-
dicted TFBSs were computed based on position weight matrices
(PWMs) of all available bacteria downloaded from PRODORIC,
version 8.9 (9). We scanned the regulatory regions of all core
genes using a sliding window with the size of the PWM using Perl
scripts. A “hit” was considered significant when the score of the
hit was 100-fold higher than the score of the background (the
log-odds ratio of the PWM vs. a background model, in which
the nucleotide frequencies were determined based on the con-
catenation of all E. coli’s regulatory sequences).

1.6. Reconstructing the E. coli Species Phylogeny. We performed
multiple sequence alignments for the 1,479 E. coli core genes
using PRANK (3). Gap columns at the 3′ and 5′ ends of genes (if
present) were removed before concatenation. The concatenated
alignment of all core genes was used as input to PhyML (10) to
reconstruct the species tree. The maximum-likelihood tree was
computed with the general time reversible model accounting for
among-site rate variation (the GTR + Γ + I model). To assess
the robustness of the topology, 100 bootstrap repeats were
conducted. All bootstrap values were higher than 95%, except
for four internal branches (shown in Fig. S3). The phylogrouping
obtained (Fig. 1) is consistent with the phylogrouping presented
in previous studies (11, 12).

1.7. Horizontal Regulatory Transfer Detection in E. coli. To test for
horizontal regulatory transfer (HRT), we tested each orthologous
group for incongruence between the tree reconstructed from its
regulatory regions and the species tree (inferred based on the
concatenation of all core alignments). This testing was done using
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the approximately unbiased (AU) test (13) as implemented in
CONSEL software (14). The input to CONSEL is the log-like-
lihood of each site under the two possible tree topologies. These
log-likelihoods were computed using PhyML (10), assuming the
GTR + Γ + I model. The P values of this AU test (13) were
corrected for multiple testing at an alpha value of 0.05 with a
Bonferroni correction. For each orthologous group, we also
tested whether the tree obtained for the regulatory region and
the tree obtained for the corresponding coding region were
congruent. Such congruency suggests a single horizontal transfer
event that affected both the gene and its coding region. Incon-
gruences suggest different evolutionary histories for the gene and
its regulatory region. This test was conducted using CONSEL as
described above, except that we conducted two reciprocal tests
here: comparing the gene tree with the regulatory sequences-
based tree and comparing the regulatory sequences-based tree
with the gene tree. Only if both tests were statistically significant
did we consider the two trees as incongruent. The P values of the
AU test (13) were assessed at an alpha value of 0.05 after
Bonferroni correction.

1.8. HRT Between E. coli and Enterobacter. To decipher the evolu-
tionary history of the regulatory region ofmetE, we reconstructed
three separate phylogenetic trees: a tree for each coding gene
flanking the regulatory region and a tree for the intergenic re-
gion (Fig. 2A). The trees were reconstructed based on 45 taxa,
43 E. coli and two Enterobacter aerogenes, that were found
to be homologous to the E. coli sequences using Nucleotide
BLAST (blastn) with default settings. The tree for each sec-
tion was computed using PhyML (10), assuming the GTR + Γ +
I model.
To infer the evolutionary history of the two metE alleles, we

first inferred the species tree among representatives of the En-
terobacteriaceae (Fig. 2B). The following strains were used for
the analysis:

Phylogenetic relationships among these strains were estab-
lished based on coding regions of seven housekeeping genes used
for multilocus sequence typing (MLST) analysis: adk, fumC, gyrB,
icd, mdh, purA, and recA. The genes were aligned with MAFFT.
The concatenated MLST tree was computed using PhyML, as-
suming the GTR + Γ + I model. Pseudomonas aeruginosa LESB58
(GI: 218888746) was used as an outgroup to root the tree.

1.9. Accessory Genome Analysis. We followed the same general
approach described above for core genes to identify regulatory
switching in E. coli accessory genes; however, we did not demand
that the gene be found in all E. coli strains this time. For the
purposes of this analysis, we define accessory genes as those
genes found in the E. coli MG1655 reference strain and in at
least one other E. coli strain.

2. Experimental Validation
2.1. Promoter Library Design. There are 1,479 core gene clusters in
E. coli (SI Text, section 1.1).
To avoid errors arising from using different annotation pro-

grams (more details are provided in SI Text, section 1.2), we first
filtered all promoter clusters that, after alignment, had indels
directly upstream of their TSS. The remaining 822 core gene
clusters were divided into two groups: 166 switched core gene
clusters and 656 unswitched core gene clusters, based on the
pipeline for detecting switched core genes described above.
From each unswitched core gene cluster, we selected the two
most diverged promoter regions (sequence divergence was
computed as 1 − frequency of matched base pairs). For each
switched core gene, we randomly selected a single representative
from each promoter cluster (determination of these promoter
clusters is described in SI Text, section 1.3). In total, 1,693 pro-
moters were selected from 40 E. coli strains. The 165 base pairs
upstream of the core gene TSS were synthesized by Agilent
Technologies using the oligo library synthesis method.

2.2. Promoter Library Construction and Growth. Synthesized pro-
moters contained BamHI and PstI restriction sites, unique 12-bp
DNA barcodes, and common end sequences for amplification. To
reduce barcode bias, each promoter was synthesized with three
different barcodes, thus leading to a library of 5,229 unique
oligonucleotides. Promoters were amplified from an ∼1 pmol
pool and cloned into a custom p15A orivector, upstream of su-
perfolder GFP (sfGFP) (15), using BamHI-HF (high fidelity)
and PstI-HF restriction enzymes and T4 Ligase (New England
Biolabs). Ligated constructs were transformed into E. coli
MegaX DH10B T1R Electrocomp cells (Invitrogen) and sub-
sequently retransformed into E. coli MG1655, both at greater
than 100-fold coverage and under carbenicillin selection. Library
culture was grown to an OD600 of ∼0.4 from a 1:300 dilution.
Cultures were immediately cooled to 4 °C, pelleted, and frozen
for future RNA analysis.

2.3. Promoter Library TSS Determination. We sequenced whole 5′
UTRs to determine TSSs using a method similar to a previously
described study (16). Total RNA was isolated from pellets using
a Qiagen RNeasy Midi Kit, and rRNA was removed using an
Epicentre Ribo-Zero rRNA Magnetic Removal Kit for Gram-
negative bacteria and purified using a Qiagen RNeasy MinElute
Kit. Remaining mRNA was dephosphorylated using 5′ RNA
Polyphosphatase (Epicentre) as follows: 12 μL of RNA from the
previous step, 2 μL of 10× RNA 5′ polyphosphatase reaction
buffer, 0.5 μL of RiboGuard RNase Inhibitor (Epicentre), 1 μL
of RNA 5′ Polyphosphatase (60 units), and 4.5 μL of RNase-free
water at 37 °C for 30 min.
The reaction was cleaned up using an RNeasy MinElute Kit.

We then ligated an RNA adaptor to mRNA 5′ ends with the
sequence GAGUUCAGACGUGUGCUCUUCCGAUCUNN
to dephosphorylated mRNA as follows: 14 μL of RNA from the
previous step, 2 μL of 250 μMRNA adaptor, 2.5 μL of 10× ligase
buffer, 2 μL of Epicentre T4 RNA Ligase (10 units), 2 μL of 10
mM ATP, 1 μL of RiboGuard RNase Inhibitor, and 1 μL of
DMSO at 22.5 °C for 3 h, followed by 65 °C for 10 min for de-
activation.
Ligated products were purified using an RNeasy MinElute Kit.

RT was performed onmRNAusing an internal sfGFP primer.We
combined the following in an RNase-free PCR tube: 0.2 μL of 10
μM RT primer (ACCGTTGACATCACCATCCAGTTCC), 12
μL of RNA from ligation, and 1 μL of 10 mM dNTP mix at 65 °C
for 5 min and on ice for 1 min.
The following components were then added to the PCR tube

from the last step: 4 μL of 5× First-Strand Buffer (Invitrogen), 1
μL of 0.1 M DTT, 1 μL of RNaseOUT (Invitrogen), and 1 μL of
SuperScript III Reverse Transcriptase (200 units; Invitrogen).

Strain Gene identifier (GI)

E. aerogenes
KCTC 2190

336246508

E. aerogenes
EA1509E

444350194

Citrobacter koseri
ATCC BAA-895

157081501

Salmonella bongori
N268-08

526125113

Salmonella enterica
serovar Thompson
str. RM6836

548713695

Klebsiella pneumoniae
CG43

549815675
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The reaction was mixed by gentle pipetting and then incubated
for 60 min at 55 °C and inactivated by heating to 70 °C for 15 min.
The resulting cDNA was prepared for next-generation se-
quencing by adding Illumina adapters and indexes through two
sequential quantitative PCR reactions (Kapa SYBR Fast; Kapa
Biosystems) while minimizing cycles to prevent overamplification.
Samples were sequenced using Illumina 250-bp paired-end se-
quencing. Reads were mapped to promoters by identifying the
N-terminal barcode in read 1. TSSs were determined by mapping
read 2 (5′ end of transcripts) to promoter sequences using custom
Python scripts.

2.4. TSS Analysis. For each promoter, we obtained an average of
382 reads. Often, these reads point to different TSSs. This in-
consistency stems from either methodological noise or from the
existence of two or more alternative TSSs. We have written
a bioinformatics pipeline: (i) to determine whether there is
a single TSS or multiple TSSs and (ii) to determine the most
probable location for each TSS after removing noise. To this
end, we first filtered out all those promoters for which the
coverage was less than 30 reads.
The number of reads supporting each possible TSS position

(between 1 and 165) was summarized. Next, the promoter
positions that correspond to the 25th percentile and the 75th
percentile were computed. In cases where the difference between
these two positions was smaller than 5 bp, we concluded that the
data support the existence of a single TSS. In all other cases, the
existence of multiple TSSs was considered.
Analyzing single TSS cases. The promoter position supported by the
highest number of TSSs was identified. Only promoter positions
supported by at least 30 reads were furthered considered (all
other cases were discarded as cases for which not enough data
exist to determine the TSS accurately). Next, we demanded that
this position be supported by at least two of the three barcodes.
Support was defined as the existence of a supporting read in the
vicinity of the TSS position (from position −5 bp to +5 bp of the
suspected TSS). Furthermore, to validate that the inferred TSS
position is not sensitive to random noise, we applied the fol-
lowing bootstrapping approach. We repeated the above analysis
for 100 bootstrap samples. A TSS was considered reliable if at
least 90 bootstrap replicates yielded the exact same TSS.
Analyzingmultiple TSS cases.The obtained TSS distribution was used
as input to an expectation maximization method to determine the
number of modes and their locations (17). The number of modes
was restricted by the constraint that each mode should be sup-
ported by at least 10% of the reads. We further requested that
the primary TSS be supported by at least 30 reads. Finally, the
primary TSS should also be supported by at least 90 bootstrap
replicates, as described above.

2.5. Comparing TSSs Between Switched and Unswitched Promoter
Clusters. For each promoter cluster, we computed a DTP score:
the difference between primary TSSs among promoter alleles.
The DTP is simply the difference in base pairs between the two
primary TSSs. When more than two alleles exist, the DTP score is
defined as the average among the pairwise DTP scores.
For over 80% of the switched core gene clusters and over 81%

of the unswitched core gene clusters, the DTP score is 0. This
finding suggests that determination of the DTP (after all of the
filtering steps described above) is reliable and that the TSS is
relatively conserved among diverged E. coli strains. However, we
further noted that among those core gene clusters with high DTP
values, there were differences in the DTP values between the
switched and unswitched categories (the switched core genes
have higher DTPs). To test if this difference is statistically sig-
nificant, we first computed the difference between average DTPs
among the 10 top DTP values for the two groups (switched and
unswitched gene clusters). To determine if the observed DTP

difference is significantly higher than the random expectation,
we repeated this procedure 1,000 times for random labeling of
core genes (switched or unswitched), resulting in an empirical
null distribution. The difference between switched and un-
switched average top decile scores was found to be significant
(60.8 for switched and 11.7 for unswitched; P < 0.01). These
results suggest that switching alters promoter architecture.
The DTP score defined above only considers distance in TSS

among primary TSSs. We repeated the above analyses with an
alternative definition of TSS distance, the DATP score (differ-
ence between all TSSs, primary and nonprimary, among promoter
alleles). The difference between the DTP and the DATP is only
for cases in which multiple TSSs exist. Whereas the DTP only
considers the primary TSS, the DATP considers alternative TSSs.
If at least one allele has multiple TSSs, the DATP score is
computed as the average between the best-matching TSSs be-
tween both alleles (where the mapping between the TSSs of al-
ternative alleles is the one that minimizes the distance). A
significant statistical difference (P < 0.03) between the average
top decile score of switched (59 DATP) and unswitched (37
DATP) genes was also found when accounting for multiple TSSs.

2.6. Comparative Transcriptomics of E. coli Strains. E. coli CFT073
was isolated from the blood and urine of a woman with acute
pyelonephritis (18). E. coli K-12 MG1655 is gastrointestinal
commensal stool isolate (19). Whereas the pathogenic E. coli
CFT073 has 5,338 genes, the commensal E. coli has only 4,321
genes. The CFT073-MG set of orthologs was inferred by iden-
tifying pairwise reciprocal tblastx best hits. We demanded at
least 95% identity in amino acid sequence for the region of
homology identified by tblastx as hsps. There were 3,293 or-
thologous genes that satisfied these criteria.
The regulatory sequences for each of these orthologs were

clustered at the identity level of 80% using CD-HIT. We defined
a gene cluster as directly switched if its regulatory region forms at
least two clusters. Genes affected by switching are either directly
switched genes or genes in an operon whose regulatory region was
switched [operonic organization was taken from a study by Gama-
Castro et al. (8)]. Using these criteria, 193 genes were directly
switched and 64 genes reside in an operon with a switched
promoter, bringing the total number of genes affected by
switching to 257 (7.8% of the total number of shared genes).

2.7. Bacterial Growth Conditions. Urine was collected from three
healthy male and female volunteers (n = 6) aged 20–40 y who had
no history of a urinary tract infection or antibiotic use in the
prior 3 mo. The urine samples were polled and immediately
filter-sterilized (0.2-m pore size). The pooled urine was stored at
4 °C for use within 3 d. For RNA preparations, both strains were
grown with shaking at 37 °C in 12 mL of potassium morpholi-
nopropane sulfonate (MOPS) media (20) supplemented with
0.2% tryptone and 0.2% glucose until the OD600 reached 0.2.
Five milliliters of the bacterial media was then passed through
a 0.2-m pore-sized filter and resuspended with either urine or
MOPS. The resuspended bacteria were grown for an additional
15 min, with shaking at 37 °C. To stop bacterial growth, ice was
added to the MOPS and urine-grown samples, and the cultures
were harvested by centrifugation (10 min, 8,000 × g, 4 °C). The
supernatant was discarded, and 500 μL of saline (0.9% NaCl)
was added to each sample. Samples were then treated with RNA
Protect Bacterial Reagent (Qiagen) to stabilize RNA according
to the manufacturer’s instructions. The bacterial pellet was fro-
zen at −20 °C until RNA extraction. For the oxidative stress
experiments, bacteria were grown for 2 h on minimal MOPS
media with 0.2% glucose (not supplemented with tryptone).
After 2 h, H2O2 at a final concentration of 1.5 mM was added to
the culture and growth was monitored.
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2.8. RNA Isolation. Total RNA was isolated from the bacterial
pellet using the RNeasy Kit (Qiagen) and treated with DNase
according to the manufacturer’s instructions. The RNA was
depleted of rRNA using a Ribo-Zero rRNA Removal Gram-
Negative Kit (Epicentre) according to the manufacturer’s
protocol.

2.9. RNA-Sequencing Analysis. RNA-sequencing libraries were
prepared using TruSeq RNA Sample Prep Kits (Illumina). High
RNA quality was confirmed before library construction using
Agilent’s TapeStation 2200. The 50-bp single-end reads were
then sequenced on an Illumina HiSeq 2500. Reads were aligned
using Rockhopper software (21) with default parameters. Fol-
lowing alignment, reads from each experiment were normalized
by upper quartile normalization (22).

2.10. Identification of Orthologous Genes with Expression
Diversification. For each of the 3,293 CFT073-MG orthologs,
we calculated the average expression level in MOPS and urine
across three independent biological repeats. A gene was con-
sidered to have divergent expression only if the ratio in expression
between the two strains [CFT073 reads per kilobase per million
(RPKM)/MG1655 RPKM] was higher than 2. Formally, we
requested that the expression of the CFT strain be either more
than twice or less than half of the expression under a perfect
correlation between the two strains, computed using a locally
weighted scatterplot smoothing function (Fig. 3). To filter out
cases in which high ratio reflects random noise, we further
requested that the difference in expression between the two strains
be statistically significant. To this end, we used a negative-binomial
test, correcting for multiple testing using a false discovery rate at
the 1% level, implemented by edger software (23). If the gene
exhibited expression divergence only at one of the conditions
tested (MOPS or urine) and not at the other and there was a fold
change higher than twofold between conditions, the gene was
considered to display a condition-specific expression divergence.

2.11. Overall Contribution of Regulatory Switching to Expression
Divergence. For each condition (MOPS or urine), the percent-
age of divergence that can be explained by regulatory switching
was calculated by dividing the number of genes that are both
switched and differentially expressed in this condition by the total
number of genes that are differentially expressed in this condition.
The overall contribution of regulatory switching to expression
divergence was calculated by dividing the number of genes that
are both switched and exhibit diverged expression in at least one
of the conditions by the number of genes exhibiting diverged
expression in at least one of the conditions.

2.12. Allelic Exchange of metE Regulatory Region. A two-step pro-
tocol was used to obtain a “clean” allelic exchange of the metE
regulatory region. Both steps were done using the λ-red re-
combination system (24). At first, competent WT O73 bacteria
were transformed with a pKD46 plasmid. The transformants were
grown in ampicillin-containing LB, induced by arabinose. The
bacteria were then transformed with the PCR fragment encoding
for kanamycin with the flanking region of the O73 metE regula-
tory region. The resulting recombinants were screened for
kanamycin-resistant and methionine auxotrophy. Next, kanamycin-
resistant recombinants containing pKD46 plasmid were trans-
formed with linear PCR products containing the regulatory re-
gion between MG1655 metE and metR. Recombinants were
screened for methionine autotrophy and kanamycin sensitivity.
The pKD46 plasmid was cured by growth on LB at 42 °C. The
final exchanged strain was verified by PCR assay.

3. Regulatory Switching Pipeline
The same methodological steps that were used for identifying
regulatory switching in E. coli were applied for nine additional
bacterial species: Chlamydia trachomatis, Salmonella enterica,
Mycobacterium tuberculosis, Corynebacterium pseudotuberculosis,
Streptococcus pneumoniae, Streptococcus pyogenes, Staphylo-
coccus aureus, Helicobacter pylori, and Neisseria meningitidis. The
full list of genomes analyzed for each bacterial species is pro-
vided in SI Text, section 6.

4. Recombination Inference with BRAT NextGen
For each species, BRAT NextGen (25) was used to determine
recombinant segments in the core genome alignment (re-
constructed from all concatenated core genes). Inference was
performed using the same fixed value of the hyperparameter
alpha = 1 for all datasets to ensure maximal comparability of the
results and to avoid potential estimation sensitivity due to the
smaller number of genomes available for some species. Twenty
iterations of the estimation algorithm were used in all cases; this
number of iterations was assessed to be sufficient for conver-
gence because changes in the hidden Markov model parameters
were already negligible over approximately the latter half of
iterations for all species. Significance of a recombinant segment
was determined as in the study by Marttinen et al. (25) using
a permutation test with 100 permutations executed in parallel on
a cluster computer. A threshold of 5% was used to conclude
significance for each putative recombination.

5. E. coli Strains Used in This Study

Strain UID

E. coli K 12 substr. MG1655 57779
E. coli ETEC H10407 161993
E. coli O111 H 11128 41023
E. coli O103 H2 12009 41013
E. coli O26 H11 11368 41021
E. coli BW2952 59391
E. coli IAI1 59377
E. coli 55989 59383
E. coli K 12 substr. DH10B 58979
E. coli HS 58393
E. coli K-12 substr. W3110 58567
Shigella boydii CDC 3083 94 58415
S. boydii Sb227 58215
E. coli E24377A 58395
E. coli SE11 59425
Shigella flexneri 2002017 159233
S. flexneri 5 8401 58583
S. flexneri 2a 2457T 57991
S. flexneri 2a 62907
E. coli DH1 161951
Shigella sonnei Ss046 58217
E. coli BL21 DE3 59245
E. coli B REL606 58803
E. coli BL21 Gold DE3 pLysS AG 59245
E. coli ATCC 8739 58783
E. coli O55 H7 CB9615 46655
E. coli O157 H7 Sakai 57781
E. coli O157 H7 EDL933 57831
E. coli IAI39 59381
E. coli SMS 3 5 58919
E. coli UM146 162043
E. coli ABU 83972 161975
E. coli IHE3034 162007
E. coli ED1a 59379
E. coli S88 62979
E. coli APEC O1 58623
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6. Bacterial Strains Used in the Regulatory Divergence
Pipeline
6.1. H. pylori

6.2. N. meningitidis

6.3. S. aureus

6.4. S. pyogenes

E. coli 536 58531
E. coli UTI89 58541
E. coli CFT073 57915
E. coli O127 H6 E2348 69 59343
E. coli SE15 161939
E. coli O157 H7 TW14359 59235
E. coli O157 H7 EC4115 59091
E. coli UMN026 62981
Shigella dysenteriae Sd197 58213
E. coli 042 161985
Escherichia fergusonii ATCC 35469 59375

ATCC, American Type Culture Collection; UID, unique identifier.

Strain UID

H. pylori 2017 161151
H. pylori 2018 161159
H. pylori 26695 57787
H. pylori 35A 49903
H. pylori 51 161925
H. pylori 83 161153
H. pylori 908 159985
H. pylori B38 59415
H. pylori B8 49873
H. pylori Cuz20 159987
H. pylori ELS37 158157
H. pylori F16 161145
H. pylori F30 159991
H. pylori F32 161139
H. pylori F57 161143
H. pylori G27 59305
H. pylori Gambia94 24 159493
H. pylori HPAG1 58517
H. pylori HUP B14 162213
H. pylori India7 161149
H. pylori J99 57789
H. pylori Lithuania75 159491
H. pylori P12 59327
H. pylori PeCan18 162211
H. pylori PeCan4 53539
H. pylori Puno120 159611
H. pylori Puno135 161157
H. pylori SJM180 53541
H. pylori SNT49 159615
H. pylori Sat464 159467
H. pylori Shi112 162207
H. pylori Shi169 162209
H. pylori Shi417 162205
H. pylori Shi470 59165
H. pylori SouthAfrica7 159989
H. pylori XZ274 165869
H. pylori 52 159983
H. pylori v225d 159639

Strain UID

N. meningitidis 053442 58587
N. meningitidis 8013 161967
N. meningitidis FAM18 57825
N. meningitidis G2136 162085
N. meningitidis H44 76 162083

N. meningitidis M01 240149 162079
N. meningitidis M01 240355 162075
N. meningitidis M04 240196 162081
N. meningitidis MC58 57817
N. meningitidis NZ 05 33 162077
N. meningitidis WUE 2594 162093
N. meningitidis Z2491 57819
N. meningitidis alpha14 61649
N. meningitidis alpha710 161971

Strain UID

S. aureus 04 02981 161969
S. aureus 11819 97 159981
S. aureus 71193 162141
S. aureus COL 57797
S. aureus ECT R 2 159389
S. aureus ED133 159689
S. aureus ED98 41455
S. aureus HO 5096 0412 162163
S. aureus JH1 58457
S. aureus JH9 58455
S. aureus JKD6008 159855
S. aureus JKD6159 159691
S. aureus LGA251 159391
S. aureus M013 88065
S. aureus MRSA252 57839
S. aureus MSHR1132 89393
S. aureus MSSA476 57841
S. aureus MW2 57903
S. aureus Mu3 58817
S. aureus Mu50 57835
S. aureus N315 57837
S. aureus NCTC 8325 57795
S. aureus Newman 58839
S. aureus RF122 57661
S. aureus S0385 159247
S. aureus T0131 159861
S. aureus TCH60 159859
S. aureus TW20 159241
S. aureus USA300 FPR3757 58555
S. aureus USA300 TCH1516 58925
S. aureus VC40 88071

Strain UID

S. pyogenes Alab49 162171
S. pyogenes M1 GAS 57845
S. pyogenes MGAS10270 58571
S. pyogenes MGAS10394 58105
S. pyogenes MGAS10750 58575
S. pyogenes MGAS15252 158037
S. pyogenes MGAS1882 158061
S. pyogenes MGAS2096 58573
S. pyogenes MGAS315 57911
S. pyogenes MGAS5005 58337
S. pyogenes MGAS6180 58335
S. pyogenes MGAS8232 57871
S. pyogenes MGAS9429 58569
S. pyogenes Manfredo 57847
S. pyogenes NZ131 59035
S. pyogenes SSI 1 57895
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6.5. S. pneumoniae

6.6. C. pseudotuberculosis

6.7. M. tuberculosis

6.8. S. enterica

6.9. C. trachomatis

Strain UID

S. pneumoniae 670 6B 52533
S. pneumoniae 70585 59125
S. pneumoniae AP200 52453
S. pneumoniae ATCC 700669 59287
S. pneumoniae CGSP14 59181
S. pneumoniae D39 58581
S. pneumoniae G54 59167
S. pneumoniae Hungary19A 6 59117
S. pneumoniae INV104 162039
S. pneumoniae INV200 162035
S. pneumoniae JJA 59121
S. pneumoniae OXC141 162037
S. pneumoniae P1031 59123
S. pneumoniae R6 57859
S. pneumoniae ST556 162191
S. pneumoniae TCH8431 19A 49735
S. pneumoniae TIGR4 57857
S. pneumoniae Taiwan19F 14 59119

Strain UID

C. pseudotuberculosis 1002 159677
C. pseudotuberculosis 1 06 A 159665
C. pseudotuberculosis 258 167260
C. pseudotuberculosis 267 162175
C. pseudotuberculosis 316 89381
C. pseudotuberculosis 31 162167
C. pseudotuberculosis 3 99 5 83609
C. pseudotuberculosis 42 02 A 159669
C. pseudotuberculosis C231 159675
C. pseudotuberculosis CIP 52 97 159667
C. pseudotuberculosis Cp162 168258
C. pseudotuberculosis FRC41 50585
C. pseudotuberculosis I19 159673
C. pseudotuberculosis P54B96 157909
C. pseudotuberculosis PAT10 159671

Strain UID

M. tuberculosis CCDC5079 161943
M. tuberculosis CCDC5180 161941
M. tuberculosis CDC1551 57775
M. tuberculosis CTRI 2 161997
M. tuberculosis F11 58417
M. tuberculosis H37Ra 58853
M. tuberculosis H37Rv 170532
M. tuberculosis H37Rv 57777
M. tuberculosis KZN 1435 59069
M. tuberculosis KZN 4207 83619
M. tuberculosis KZN 605 54947
M. tuberculosis RGTB327 157907
M. tuberculosis RGTB423 162179
M. tuberculosis UT205 162183

Strain UID

S. enterica arizonae serovar 62 z4 z23 RSK2980 58191
S. enterica serovar Agona SL483 59431
S. enterica serovar Choleraesuis SC B67 58017
S. enterica serovar Dublin CT 02021853 58917
S. enterica serovar Enteritidis P125109 59247
S. enterica serovar Gallinarum 287 91 59249
S. enterica serovar Gallinarum pullorum RKS5078 87035
S. enterica serovar Heidelberg B182 162195
S. enterica serovar Heidelberg SL476 58973
S. enterica serovar Newport SL254 58831
S. enterica serovar Paratyphi A AKU 12601 59269
S. enterica serovar Paratyphi A ATCC 9150 58201
S. enterica serovar Paratyphi B SPB7 59097
S. enterica serovar Paratyphi C RKS4594 59063
S. enterica serovar Schwarzengrund CVM19633 58915
S. enterica serovar Typhi CT18 57793
S. enterica serovar Typhi P stx 12 87001
S. enterica serovar Typhi Ty2 57973
S. enterica serovar Typhimurium 14028S 86059
S. enterica serovar Typhimurium 798 158047
S. enterica serovar Typhimurium LT2 57799
S. enterica serovar Typhimurium SL1344 86645
S. enterica serovar Typhimurium ST4 74 84393
S. enterica serovar Typhimurium T000240 84397
S. enterica serovar Typhimurium U.K. 1 87049
S. enterica serovar Typhimurium 86061

Strain UID

C. trachomatis 434 Bu 61633
C. trachomatis A2497 159863
C. trachomatis A2497 159993
C. trachomatis A HAR 13 58333
C. trachomatis B Jali20 OT 59351
C. trachomatis B TZ1A828 OT 59349
C. trachomatis D EC 159881
C. trachomatis D LC 159879
C. trachomatis D UW 3 CX 57637
C. trachomatis E 11023 161369
C. trachomatis E 150 161403
C. trachomatis E SW3 167483
C. trachomatis F SW4 167484
C. trachomatis F SW5 167485
C. trachomatis G 11074 161409
C. trachomatis G 11222 161361
C. trachomatis G 9301 161377
C. trachomatis G 9768 161353
C. trachomatis L2b UCH 1 proctitis 61635
C. trachomatis L2c 68843
C. trachomatis Sweden2 161995
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Fig. S1. Sequence divergence among core regulatory regions. Percent identity is defined as the fraction of positions that are exactly the same across all
analyzed E. coli strains. Although most core regulatory regions are conserved, there is a subpopulation of core genes that exhibit high divergence in their
regulatory regions.

Fig. S2. Average percent identity between switched E. coli promoter clusters. Average percent identity is defined as the average pairwise identity (fraction of
positions that are identical) between all of the promoters that do not belong to the same cluster. Promoter pairwise alignment was performed by MAFFT. The
average sequence identity between promoter clusters of switched genes is 52%. Cases in which the percent identity between switched promoter clusters is
high are those cases in which switching is restricted to a small fragment of the entire regulatory region.
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Fig. S3. E. coli species tree. The maximum-likelihood tree is based on 1,479 concatenated core genes. Statistical support for the internal branches was
computed using bootstrapping with 100 repetitions. Branches with low support (below 95%) are marked by a red circle.

Fig. S4. Regulatory switching occurs in all gene functional groups. Bars represent the percentage of genes in each cluster of orthologous group category that
exhibits regulatory switching in E. coli out of the total number of genes in each category. Asterisks indicate categories that are significantly enriched in genes
that underwent regulatory switching (P < 0.05 after false discovery rate correction).
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Fig. S5. Pairwise correlation between biological replicates of the RNA sequencing. The gene-wise correlation of transcriptomes for each growth condition
(E. coliMG grown onMOPS and urine and E. coli CFT073 grown onMOPS and urine) across all biological replicates (n = 3) and their coefficient of determination
are shown.

Fig. S6. Level of regulatory switching does not correlate with the number of genomes sampled. The relative percentage of regulatory switching is plotted
against the number of genomes analyzed in each species. Marked in red are N. meningitidis (upper point) and M. tuberculosis (lower point). Although both
Neisseria and Mycobacterium had 14 genomes sampled, the percentage of switching in Neisseria is 15-fold higher than in Mycobacterium. The Pearson
correlation is not statistically different from 0 (asymptotic P = 0.19).

Oren et al. www.pnas.org/cgi/content/short/1413272111 9 of 11

www.pnas.org/cgi/content/short/1413272111


Table S1. Regulatory clusters with altered transcription factor binding patterns

Protein GI
Known transcription factor binding sites that are

only found in one of the regulatory types
Predicted transcription
factor binding sites

16130166 CspA, Fis Fnr
16128459 OxyR dnaA, argP
16130817 ArgP OxyR
90111537 exuR OxyR
16128575 Fur*, RutR*
16129213 Fur GcvA
16131596 PhoB NhaR
16128788 CRP, AscG Fnr
16130639 NsrR IHF
16130585 OxyR†

16128912 CspA†

16131536 AraC†, GntR†

16130824 ArgP, Lrp OxyR, GcvA
16128390 Fis lexA
16131678 MetJ*
49176358 Lrp OxyR
16131856 AlgU†,‡

16128961 TorR TorR§

*Second type has a deletion in the specific transcription factor binding site compared with the E. coli K-12 strain.
†Second type has an insertion of the specified transcription factor binding site compared with the E. coli
K-12 strain.
‡Transcription factor binding site is predicted based on the position-specific scoring matrix built for AlgU of P.
aeruginosa.
§Regulatory types differ in the number of TorR binding sites (between two and four).

Table S2. Transcription factors that underwent regulatory
switching

Protein GI Name No. of target genes*

49176356 gntR 12
16129236 cysB 24
16130817 argP 14
16128106 pdhR 42
16128961 torr 13
16130456 iscR 31
16130130 narP 64
16131539 uhpA 1
49176329 nanR 8
90111289 marR 3
90111537 exuR 8
16129295 Fnr 304
16130621 ascG 5
16131677 metR 6
49176012 lacI 3
90111079 caiF 10
90111679 zur 6
94541116 yoeB NA†

145698338 fabrR 2

NA, not available.
*Genes directly regulated by the transcription factor. Data are taken from
RegulonDB.
†No known target genes.
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Table S3. Characteristics of the bacterial species used in the regulatory divergence pipeline

Species
No. of

genomes
No. of

core genes
Nucleotide
diversity*

Relative percent
of core† Gram Lifestyle‡

C. trachomatis 21 764 0.003 85 − Obligate intercellular parasite
S. enterica 26 1,798 0.01 40 − Pathogen
M. tuberculosis 14 1,720 0.0002 44 + Human pathogen
C. pseudotuberculosis 15 1,372 0.005 66 + Ruminant pathogen
S. pneumoniae 18 1,193 0.008 57 + Pathogen
S. pyogenes 16 1,100 0.008 60 + Pathogen
S. aureus 31 520 0.01 20 + Opportunistic pathogen
H. pylori 38 365 0.03 24 − Opportunistic pathogen
N. meningitidis 14 1,116 0.02 57 − Opportunistic pathogen
E. coli 46 1,479 0.01 32 − Diverse

−, Gram-negative bacteria; +, Gram-positive bacteria.
*Nucleotide diversity, π, measures the average of nucleotide differences per site between all pairwise sequences. The core genes of each bacterial species were
concatenated and used as input for pipeline for diversity analyses.
†Number of core genes divided by the average genome size.
‡Data are taken from Integrated Microbial Genomes.

Table S4. Recombination analysis

Species name r/m ratio
No. of recombination

events
Mean recombination
segment length, bp

C. trachomatis 0.66 95 10,005
S. enterica 0.14 554 660
M. tuberculosis 0 0 0
C. pseudotuberculosis 0 0 0
S. pneumoniae 5.17 960 1,970
S. pyogenes 3.07 546 3,031
S. aureus 0.58 380 1,131
E. coli 0.38 5,239 242
H. pylori 21.11 830 921
N. meningitidis 14.62 1,280 1,504

r/m ratio, recombination-to-mutation ratio.
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