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SUMMARY

Pleiotropic regulatory mutations affect diverse
cellular processes, posing a challenge to our un-
derstanding of genotype-phenotype relationships
across multiple biological scales. Adaptive labora-
tory evolution (ALE) allows for such mutations to
be found and characterized in the context of clear
selection pressures. Here, several ALE-selected
single-mutation variants in RNA polymerase
(RNAP) of Escherichia coli are detailed using an
integrated multi-scale experimental and compu-
tational approach. While these mutations increase
cellular growth rates in steady environments,
they reduce tolerance to stress and environmental
fluctuations. We detail structural changes in the
RNAP that rewire the transcriptional machinery to
rebalance proteome and energy allocation toward
growth and away from several hedging and stress
functions. We find that while these mutations occur
in diverse locations in the RNAP, they share a com-
mon adaptive mechanism. In turn, these findings
highlight the resource allocation trade-offs organ-
isms face and suggest how the structure of the reg-
ulatory network enhances evolvability.

INTRODUCTION

Many causal genetic variants across all forms of life are found in

regulatory regions (Enard et al., 2014; Fraser, 2013; Jones et al.,

2012; King and Wilson, 1975; Prud’homme et al., 2007; Wray,

2007). In addition to cis-regulatory variation, causal mutations

are often found in trans-acting transcriptional regulators (Barrick

et al., 2010; Ferenci, 2008; LaCroix et al., 2015; Sandberg et al.,

2014; Saxer et al., 2014). Because of transcriptional regulators’
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involvement in multiple cellular processes, mutations in tran-

scriptional regulators often affect multiple phenotypes (King

et al., 2004; Solopova et al., 2014; Venturelli et al., 2015; Wang

et al., 2015). Understanding the multi-scale and pleiotropic

cascade of events resulting from regulatory mutations poses a

challenge for systems biology.

Adaptive laboratory evolution (ALE) allows for adaptive

mutations to be found and characterized in the context of clear

selection pressures. ALE experiments repeatedly identify muta-

tions in the RNA polymerase (RNAP) (Barrick et al., 2010; Drag-

osits et al., 2013; LaCroix et al., 2015; Sandberg et al., 2014;

Tenaillon et al., 2012). Several of these mutations have been

shown to result in fitness benefits in the selected environment

and fitness deficits in several different environments (Cheng

et al., 2014; Conrad et al., 2010; Dragosits et al., 2013). While

the RNAP is not typically considered a transcription factor,

it can be considered to lie at the top of the transcriptional reg-

ulatory network hierarchy. Presumably, these mutations alter

the gene regulatory network to change the specific balance of

cellular resources.

Here, we detail the multi-scale mechanism underlying several

trans-acting adaptive regulatorymutations inRNAPofEscherichia

coli (Cheng et al., 2014; Conrad et al., 2010; LaCroix et al., 2015).

Using detailed phenotypic assays, we show consistent fitness

effects in different environments. A multi-‘‘omic’’ approach with

key environmental controls reveals a systematic and consistent

modulation of the transcriptional regulatory network (TRN) toward

growth functions and away from functions that hedge against

environmental change. ‘‘Econometric’’ analysis using a genome-

scale model reveals that the resultant resource reallocation can

quantitatively explain the fitness effects. Finally, structural dy-

namics of RNAP provide insight into how these mutations result

in strikingly similar effects. This study moves the field forward by

detailing themulti-scalemolecular, phenotypic, and physiological

responses underlying the pleiotropic effects of adaptive regula-

torymutations. It provides insight into the evolutionary constraints

and the mechanisms that govern resource allocation in simple

organisms.
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Figure 1. Growth versus Hedging Antagonistic Pleiotropy in Organismal Phenotypes

(A) Adaptive laboratory evolution (ALE)-selected rpoB mutations (E546V blue and E672K gray) grow faster in the glucose consumption phase but have a longer

diauxic shift to grow on acetate than does wild-type (red) (Table S1).

(B) In addition to the increase of growth rate on glucose (the environment in which the mutants were selected), several additional organismal phenotypes are

affected by the rpoB mutations. Bar charts show the percent change in measured phenotypes compared to wild-type. The steady-state growth rate increases

(cyan), and the growth rate in LBmedium, aswell as fitness in environmental shifts and shocks, decreases (brown). LB, Luria broth; Glc, glucose, Succ, succinate;

Ac, acetate; Ery 100, 100 mg/ml erythromycin; Amp, ampicillin.

See also Figures S1 and S2 and Tables S1 and S2.
RESULTS

Pleiotropy of Adaptive Mutations in RNA Polymerase
A recent adaptive laboratory evolution (ALE) experiment of E. coli

in glucose minimal media (MM) identified recurring mutations

in rpoB (the b subunit of RNAP), including rpoB E546V and

rpoB E672K (LaCroix et al., 2015). We introduced these two

ALE-selected mutations into the starting strain (i.e., the ‘‘wild-

type’’ strain) and observed consistent physiological effects.

Growth rate increased (by �25%) as the result of increases in

both biomass yield (by �11%) and substrate uptake rate (by

�14%). The use of an automated plate reader to obtain frequent

measurements revealed a diauxic shift of the mutant strains in

glucose M9 mineral media (Figure 1A).

Since mutations often have positive and negative fitness

effects across several environments (referred to as pleiotropy),

we then assessed the growth rate of the rpoB E546V and rpoB

E672Kmutants under a variety of single carbonsources,mixtures

of carbon sources, rich media, and stress conditions. Addition-

ally,weperformedmotility, acid shock, and antibiotic persistence

phenotypic tests (Figures 1B and S1; Data S1 and S2). These

RNAP mutations show consistent fitness effects: they enable

faster growth in several carbon sources, in low pH, and in the

presence of erythromycin. However, they lead to lower motility,

lower survival under acid shock, reduced antibiotic persistence,

longer diauxic shifts, and lower growth rates in complex media.

Therefore, the mutants show increased fitness in conditions of

steady-state growth, but a decreased fitness in changing envi-
ronments. In other words, they show strong, consistent antago-

nistic pleiotropy for growth versus ‘‘hedging’’ functions.

Mutations in RNA Polymerase Are Highly Specific
To assess whether other amino-acid substitutions in the RNAP

ALE-selected loci affect growth phenotypes, we used multiplex

automated genome engineering (MAGE) (Wang et al., 2009)

to generate variants in all possible 546 and 672 positions. After

8–12 rounds of MAGE, we isolated and verified six variants of

E546X position and seven variants for the E672X position. Two

amino-acid substitutions, E546K and E672R, which have similar

chemical properties as those discovered by ALE, resulted in an

increase in growth rate. These MAGE-selected mutants also

exhibit longer diauxic shifts, showing similar pleiotropic effects

as the ALE selected mutants (Figure S2). All other amino-acid

substitutions generated by MAGE did not affect growth rate

significantly.

These results suggest that the mutations in RNAP affecting

fitness are specific. Namely, all faster growing RNAP mutants

showed antagonistic pleiotropy for growth versus ‘‘hedging.’’

Genome-Scale Transcript Profiling Reveals Conserved
Growth versus Hedging Response
To reveal the systems-level mechanism of the pleiotropic effects

of the RNAPmutations, we obtained RNA sequencing (RNA-seq)

and metabolomics data from mid-logarithmic growth phase

in glucose minimal media for the wild-type, rpoB E546V, and

rpoB E672K mutant strains (Figure S3). The concentrations
Cell Systems 2, 260–271, April 27, 2016 261



of ten metabolites, including pyrimidine, glycolytic, and TCA

intermediates, changed significantly compared to wild-type

(Student’s t test, p < 0.01, Bonferroni corrected). But, overall,

the metabolome remained fairly stable (Figure S3; Data S1). In

contrast, the expression profiling data revealed 243 consistently

differentially expressed genes. Like the pleiotropic fitness effects

of the mutants, the differential gene expression is strikingly

consistent (Figure 2A, left), suggesting a common underlying

mechanism at the systems level.

Notably, we also found that the differential expression profiles

of the two strains harboring rpoBmutants were similar to that of a

previously profiled mutant strain that has a 27 amino-acid dele-

tion in the b’ subunit of RNAP (rpoC-del27, identified by ALE on

glycerol) (Cheng et al., 2014; Conrad et al., 2010; Herring et al.,

2006). The changes in expression of the rpoC-del27 mutant

(Cheng et al., 2014) (compared to wild-type) grown in glycerol

match those of the rpoB mutants grown in glucose (Figure 2A,

right; c2 test for independence, p < 10�8).

Toobtain insight into theprocessesperturbedby theRNAPmu-

tations, we classified the 243 consistently differentially expressed

genes by function (Data S3). We found that the genes in the same

functional category are often differentially expressed in a consis-

tent direction.Weused thisobservation todefineupregulatedand

downregulated functions. The upregulated functions (defined

as >80% of the genes being upregulated) were broadly related

to cellular growth, including protein synthesis and folding,

amino-acid biosynthesis and uptake, and carbohydrate transport

and utilization. On the other hand, the downregulated functions

(defined as >80% of the genes being downregulated) broadly

hedge against environmental change and stress, including os-

motic and oxidative stress, flagella, chemotaxis, acid resistance,

and biofilm formation. Two categories of genes were not consis-

tently up or downregulated; these are DNA repair and genes with

unknown function. Some of the differentially expressed genes

were transcription factors or small RNA regulators (Figure 4B).

These regulators were differentially expressed in the direction ex-

pected based on the directionality of the regulator (i.e., activator

or repressor) and the direction of the differential expression of

the regulated functional category (Table S3; Data S3). Thus, at

the molecular level, the differentially expressed genes reflect the

growth versus hedging phenotypes observed at the organismal

level.

Environmental Controls Disentangle Cause versus
Effect of Mutations
As growth rate itself has a strong effect on gene expression

(Klumpp and Hwa, 2014), we sought to identify the differential

expression changes caused only by the mutation from those

caused indirectly by increased growth. To disentangle these ef-

fects, we obtained RNA-seq data under conditions where the

wild-type and mutant strains grow at the same rate (glucose

limited chemostat culture) and under conditions where the mu-

tants grow slower than wild-type (Luria broth [LB]-rich media).

Regardless of the growth rate and environment, the hedging

functions were downregulated in the mutant strain compared

to wild-type (Figure 2C). Differential expression of the growth

functions, however, was dependent on the growth rate: growth

genes were not differentially expressed in chemostat and were

downregulated in LB. Thus, these environmental controls disen-
262 Cell Systems 2, 260–271, April 27, 2016
tangle the cause and effect of the mutations: the mutations

directly result in the downregulation of hedging genes, whereas

expression of the growth-related genes is coupled to the cell’s

growth rate.

Structural Dynamics of RNAP Suggests a Common
Allosteric Mechanism
Both mutations, rpoB E546V and E672K, are located�25 Å from

the catalytic site of RNAP and �25 Å from each other. How do

they result in similar patterns in transcriptional reprogramming

to downregulate hedging functions?

To investigate this question, we performed molecular dy-

namics simulations of the core RNAP open complex aiming to

propose a common putative molecular mechanism for the pleio-

tropic fitness effects of the rpoB mutations. We found a strong

correlation between the extent of increase in interaction energy

between the b and b’ subunits, and the increase in cell fitness

for various E672 mutations generated by MAGE (both beneficial

and neutral; Figure 3A). Such destabilization of subunit interac-

tion is consistent with a previous study that showed a decrease

in open complex half-life of the rpoC-del27 mutation, which has

similar growth and transcriptional effects (Conrad et al., 2010).

To further explore the functional correlation among different

mutations, we decomposed the RNAP complex into�20 ‘‘struc-

tural communities,’’ within which the molecular motions of resi-

dues are strongly correlated (Sethi et al., 2009). Despite the large

spatial separation between E672 and E546, they belong to the

same dynamical community (Figure 3B). Furthermore, manymu-

tations detected in RNAP in other ALE experiments (Barrick

et al., 2010; LaCroix et al., 2015; Tenaillon et al., 2012) can

also be found in this and neighboring communities (Figure 3B;

Table S4). This structural community consists of �250 residues

in rpoB, part of the bridge helix (BH) in rpoC, and nucleotides

on the template DNA strand. As such, we may link the collective

motions of these structural modules to the structural rearrange-

ments of BH shown to coordinate catalysis and DNA transloca-

tion in the nucleotide addition cycle (NAC) (Bar-Nahum et al.,

2005; Weinzierl, 2010).

Three observations about the motions of structural modules in

RNAP are notable. First, the bridge helix kinked at two hinge po-

sitions (BH-HN and BH-HC; Figure 3C) in discrete steps of �10�

to 20�, indicating the existence of transient metastable inter-

mediates between the RNAP open and close conformations.

Second, the boundary between the two neighboring structural

communities switched from BH-HN to BH-HC when the BH

went through a transition from its bent to relaxed state. Third,

there was a strong correlation between the bending angle of

the BH and the relative motion between neighboring commu-

nities along the direction of DNA translocation. Based on these

observations, we hypothesize that the ALE-selected muta-

tions may modulate the stability of the RNAP open complex by

adjusting the coupling between the relative motions of neigh-

boring communities and the bending-relaxing cycle of the BH

(Figure 3C).

The stability of the RNAP open complex not only affects effi-

ciency of the nucleotide elongation reactions but may also

modulate the multi-step process of bacterial transcription

initiation (Saecker et al., 2011). First, it has been shown that

the competitive binding of different s factors to the RNAP core



Figure 2. Consistent Molecular Growth versus Hedging Response
(A) The differential RNA expression in the ALE-selected rpoB mutants (E546V and E672K) is consistent (left). The differential RNA expression in glucose is also

concordant with the differential protein expression measured in previous work on glycerol of an ALE-selected 27-amino acid deletion in b’ compared to wild-type

(rpoC-del27 [Cheng et al., 2014], right).

(B) Functional classification of differentially expressed genes reveals that genes with common functions are often differentially expressed in the same direction,

segregating growth (upregulated, cyan) and hedging (downregulated, brown) functions. Gray dots are genes with functions not consistently differentially ex-

pressed. Median differential expression of genes in the functional categories is shown in the heat map; dashes indicate genes not detected in proteomics data

(Cheng et al., 2014).

(legend continued on next page)
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enzyme can be tuned by the stability of open complex in the

presence of (p)ppGpp or sD mutations (Barker et al., 2001; Jish-

age et al., 2002; Österberg et al., 2011). Notably, many RNAP

mutations with experimentally measured short-lived open com-

plex are located in community 1, indicating that E672 and E546

(and other ALE-selected mutations in the same and neighboring

community; Figure 3B) may achieve global transcriptional regu-

lation in a similar way. Second, further along the transcription

initiation process, lower stability of the open complex is shown

to facilitate s factor release and promoter escape, which, in

turn, coordinate the probability of abortive and productive RNA

synthesis (Cashel et al., 2003; Roberts and Roberts, 1996). It is

worth noting that sequence and structural differences in the crit-

ical s3.2 region of sD and sS may be coupled to open complex

stability in order to convey differential transcription regulation

for growth-related versus hedging functions.

In summary, we observed a strong correlation between the

open complex stability and the growth rates of the RNAP mu-

tants. Detailed analysis of the structural communities suggested

a common molecular mechanism, regarding how distantly

located mutations may result in the same allosteric effect.

Although previous findings indicated that open complex stability

can modulate global transcription through alternative s factors

binding, coordination of abortive RNA synthesis, and speed of

nucleotide addition, further experiments are required to draw

conclusions about the exact mechanism how the ALE-selected

mutations achieve these goals.

Transcriptional Regulatory Network Perturbation
Explains Observed Molecular Response
Consistent with the perturbed structural properties of the

mutated RNAP, the downregulated (hedging) genes tend to

have promoters utilizing stress-related sigma factors (sS and

sF), and the upregulated (growth) genes tend to have promoters

utilizing growth-related sigma factors (sD, sN, and sH) (Figures

4A and S4). The sigma factors themselves are not detectably

differentially expressed. However, the observed differential

expression is more specific than that caused by sigma factors

alone.

There are ten transcription factors (TFs) and regulatory small

RNAs (sRNAs) differentially expressed in the mutant strains (Fig-

ure 4B). Each of these regulators can be associated with one or

more of the differentially expressed functional categories identi-

fied (Table S3). Furthermore, across all of the strains (wild-type,

rpoB E546V, and rpoB E672K) and environments (glucose

excess, glucose limitation, and rich media) examined with

RNA-seq, the differential expression of the identified growth

and hedging functions was in a direction consistent with the

differential expression of their regulators (based on known acti-

vation or repression relationships; Figure 4B). Taken together,

these results suggest that the balance between growth and

hedging functions is achieved through global modulation of the

transcriptional regulatory network. The structure of the network
(C) Environmental controls disentangle the direct effects of the mutations and in

identified growth and hedging functions across environments, showing that hed

functions depends on the growth rate. Stars indicate if the mean differential expre

sided t test (* p < 0.05, *** p < 0.0001).

See also Figure S3, Table S3, and Data S1 and S2.

264 Cell Systems 2, 260–271, April 27, 2016
may enable E. coli to rebalance its proteome in response to

evolutionary pressures with single-point mutations in RNAP.

‘‘Econometric’’ Analysis of Proteome and Energy
Resource Allocation Explains the Fitness Trade-off
The molecular and regulatory effects of the rpoB mutations

revealed that resource allocation underlies the observed growth

versus hedging fitness effects. We used a recently developed

genome-scale computer model of microbial growth (O’Brien

et al., 2013), called an ME-model (Lerman et al., 2012; Liu et al.,

2014; O’Brien et al., 2013; Thiele et al., 2009) (for metabolism

and expression), to quantify the fitness effects associated with

proteomeandenergy reallocationby thesemutations (Figure 5A).

The ME-model allows global energy accounting based on

the physiological data from wild-type and RNAP mutant strains.

This analysis showed that the RNAP mutations shift about one-

third (28%–37%) of the unaccounted for energy (i.e., processes

outside of metabolism and protein synthesis, often referred to as

the ‘‘maintenance energy’’ [Pirt, 1982]) to growth-related pro-

cesses (Figure 5B). Then, using the gene expression data, we

estimated a 2%–5% reduction of the transcriptome allocated

to non-ME genes (i.e., genes not included in the ME-model;

non-growth functions) and a commensurate increase in alloca-

tion to ME genes (i.e., modeled, growth functions) in the RNAP

mutants (Figure 5B). ME-model analysis thus shows a clear shift

to a more growth-supporting energy and proteome allocation as

a result of the observed RNAP mutations.

We used the ME-model to understand how these changes in

resource allocation affect cellular physiology (i.e., growth rate,

biomass yield, and uptake rate). The non-ME proteome and

energy allocation are adjustable model variables; when varied

in the model, the measured changes in non-ME energy and

transcriptome allocation can quantitatively account for the

measured physiological changes (biomass yield and uptake

rate) in the mutant strains (Figures 5C and S5). Therefore, the

growth increase can be accounted for by the measured change

in resource allocation, suggesting that the expression of hedging

functions restrains growth rate in the wild-type strain.

The ME-model allowed us to quantitatively elucidate the rela-

tionship between changes in overall physiological measures (i.e.,

growth rate, substrate uptake rate, and yield) and the changes in

allocation of protein and energy (Figure 5). On the basis of this

quantitative relationship, we suggest that the pleiotropic effects

of the rpoB mutation are due to a fundamental constraint of

limited proteome and energy resources, leading to an inherent

trade-off in resource allocation.

DISCUSSION

Here,we elucidate themechanisticmulti-scale phenotypic effects

of adaptive regulatory mutations. Single amino-acid changes

in the RNAP reprogram the transcriptional regulatory network

to reallocate resources toward growth and away from hedging
direct effects of changes in growth. Box plots show differential expression of

ging functions are consistently downregulated and the expression of growth

ssion of the group of genes is significantly different than zero, based on a two-



Figure 3. ALE-Selected rpoB Mutations Modulate Structural Dynamic of RNAP of E. coli

(A) Change in interaction energy between the b and b’ subunits across six different E672 mutations, compared with their corresponding growth rates. To reduce

bias from a single static crystal structure, interaction energy is calculated every 25 ps over a 60-ns molecular dynamic trajectory starting from the RNAP open

complex.

(B) Dynamical community structures encompassing the ALE-selected mutations. As discussed in the text, Community 1 (green) includes the bridge helix in b’

subunit (purple), bE672, and bE546, as well as a few other ALE-selectedmutations in contact with bE672. Community 2 (brown) spans the interface between the b

and b’ subunits, interacting with community 1 on one side and the (p)ppGpp binding site on the other side.

(C) A schematic representation showing how relative movements between the dynamical communities modulate open complex stability. Components are color-

coded as in (B). A third community (blue) is identified for calculating the correlated motions with respect to the mutation containing community 1. Continuous

arrows show the direction of relative collective motions of the community structures. Effective allosteric communication between distantly located residues can

be resolved from the optimal path calculated based on a dynamical correlation network. The result shows that bE672 and bE546 share the same optimal

dynamical path (orange) toward the (p)ppGpp binding site in the u subunit. Structural elements are shown from the same perspective and color-coded as in (B).

See also Figure S2 and Table S4.
functions. The mutations result in antagonistic pleiotropy in which

the organism is more fit in stable environments but less fit in envi-

ronmental shifts and shocks (Futuyma and Moreno, 1988).

Antagonistic Pleiotropy due to a Fundamental Trade-off
Mutations that are beneficial or neutral in one environment, but

often have negative fitness effects in other environments are
referred to as pleiotropy. Pleiotropy shapes the evolution of

organisms and is thought to underlie the evolution of specialist

species. Several mechanisms can give rise to pleiotropy and

some have been demonstrated (Cooper and Lenski, 2000; Leiby

and Marx, 2014; Remold, 2012).

Fundamental biological constraints can result in antagonistic

pleiotropy, though examples of these cases are lacking. Using
Cell Systems 2, 260–271, April 27, 2016 265



Figure 4. Reprograming of the Regulatory

Network

(A) The s factor usage of differentially expressed

genes in mutant strains is shown. Bars indicate the

fraction of upregulated (cyan) and downregulated

(brown) genes that have a promoter regulated by

a given s factor. Only s factors with greater than

10% of promoters regulated among either upre-

gulated or downregulated genes are shown. Sig-

nificant differences in the proportion between s

factor use in upregulated and downregulated

genes are indicated with asterisks; one asterisk

indicates p < 0.05, and two asterisks indicate p <

0.005.

(B) The fold change for transcription factors and

sRNA that are significantly differentially expressed

in both mutant strains compared to wild-type are

shown.

See also Figure S4, Table S3, and Data S3.
a systems biology approach, we show that the growth rate dif-

ference in wild-type and mutant strains can be quantitatively

explained by changes in proteome and energy allocation. These

resources are limited, resulting in an inherent trade-off between

growth and hedging functions. Such proteome and energy allo-

cation constraints likely result in pervasive evolutionary trade-

offs and likely underlie several recent examples of antagonistic

pleiotropy (Solopova et al., 2014; Venturelli et al., 2015; Wang

et al., 2015).

Bacterial Evolvability through Regulatory Network
Structure
Mounting evidence supports that much of the functional diver-

gence between organisms occurs in regulatory regions (Enard

et al., 2014; Fraser, 2013; Jones et al., 2012; King and Wilson,

1975; Prud’homme et al., 2007; Wray, 2007). The detailed

example of the RNAP mutations here suggests why (in part)

this may be the case.

As regulatory networks are ‘‘aligned’’ with particular functional

subsystems, mutations that perturb them change phenotypes in

a functionally coherent manner (Innocenti and Chenoweth, 2013;

Saxer et al., 2014; Wagner et al., 2007). The regulatory rebalanc-

ing detailed here occurs along a coherent growth versus hedging

trajectory. On the other hand, mutations that are inconsistent or

imbalanced in themolecular changes they cause would likely not
266 Cell Systems 2, 260–271, April 27, 2016
be selected. Therefore, in addition to

enabling short-term responses to envi-

ronmental change, the structure of the

regulatory network also enables longer-

term productive evolutionary change.

Remarkably, single, but non-unique, point

mutations allow such adaptation.

Multi-scale Characterization of
Genotype to Phenotype
Sequencing of many individual genomes

has led to the identification of the

genomic regions under selection (Gross-

man et al., 2013) and enabled the asso-

ciation of variants with organismal (Mc-
Carthy et al., 2008) and molecular (Cookson et al., 2009)

phenotypes. However, there is a large gap between identifying

causal variants and mechanistically understanding their pheno-

typic consequences. The mutations studied here are some of

the most comprehensively phenotyped to date, with environ-

mental controls to separate cause and effect. We employ

state-of-the-art structural and systems biology modeling ap-

proaches to help bridge the gap between genotype and pheno-

type. Together, these analysis approaches enabled us to infer

links from mutation to biophysical effects on protein function to

systems-level molecular and regulatory response and, finally,

to organismal phenotype (Figure 6). Therefore, this study outlines

how we might begin to understand the multi-scale genotype-

phenotype relationship at a true systems level.
EXPERIMENTAL PROCEDURES

Strains and Cultivations

E. coli MG1655 was used as wild-type. The ALE-selected rpoBE564V and

rpoBE672K knock-in strains were previously constructed by allelic replace-

ment (LaCroix et al., 2015). To generate additional variants of rpoB 546 and

672 positions, MAGE was performed on the wild-type strain first by transfor-

mation of recombineering plasmid pKD46 (Datsenko and Wanner, 2000) and

then by inactivation of mutS with two nonsense mutations at residues 189

and 191 using an oligo (mutS_MUT). Two oligos (rpoB_E546X and rpoB_

E672X) that resulted in NNS codon mutations at rpoB residues 546 and 672



Figure 5. The Changes and Effects of Proteomic and Energetic Resource Allocation

(A) A genome-scale model of metabolism and gene expression (ME-model) is used to integrate the RNA-sequencing and physiological data. The transcriptome

fraction devoted to ME and non-ME (i.e., not included in the ME-model) genes is calculated for the wild-type and mutant strains. The gray area of the pie chart

indicates the fraction of the transcriptome reallocated from non-ME to ME genes. The bar chart shows the functional categories that reduced or increased in

expression by more than 0.1% of the total transcriptome. All percentages are shown as the average for E546V and E672K. AA, amino acid biosynthesis; Pro,

protein synthesis/folding; AR, acid resistance; Fla, flagellar.

(B) The physiological data were used to calculate the energy use not accounted for by the ME-model (see the Experimental Procedures, Computation of

maximum unaccounted for energy), showing a reduction in unaccounted for energy use in rpoB mutants compared to wild-type. Error bars indicate SE across

biological replicates.

(C) The effects of non-ME protein and energy use on maximal growth rates in the ME-model are computed and shown in the contour plot (see the Experimental

Procedures). The wild-type and mutant strains are indicated on the plot, showing how lower non-ME protein and energy use can cause increased growth.

See also Figure S5.
were introduced into the strain through 8–12 rounds of MAGE, followed by col-

ony isolation of mutants, PCR verification, and Sanger sequencing. To perform

each cycle of MAGE, the l-Red system was induced with 0.5% arabinose

45 min prior to generation of electrocompetent cells and oligo. Batch cultures

were done in a flask with M9 minimal media and 4 g/l of glucose at 37�C or

LB-rich media. Glucose-limited chemostats were carried out in a Bioflo 110

fermentor (New Brunswick Scientific). Glucose-supplemented M9 was added

to the reactor at 0.31 and 0.44 h�1 dilution rates controlled by a peristaltic

pump. Steady state was achieved after 3–5 residence times and was verified

by biomass measurements. For all cases, phenotypic tests were performed by

inoculation of the media with an overnight pre-culture of glucose M9 media.

Erythromycin was added to the media to the indicated concentration. The

pH ofM9was adjusted to the indicated valuewith 6MHCl. Different substrates

and mixtures were added to M9 to test growth in the indicated conditions.

All growth curves were inoculated to a 0.02 OD, and 200 ml were cultured by

triplicate in a Bioscreen C device at 37�C for 15–24 hr. Growth rates were

calculated by determining the slope of the log-linear region using a linear

regression; the first growth phase was used to do calculations when diauxic

growth was observed.
Motility Test

Cells were grown to mid-log phase, and 10 ml of cells in suspension were

spotted onto 0.3% agar plate with glucose M9 media. Plates were photo-

graphed, and motility was determined by halo expansion between 24 and

48 hr.

Acid Shock

Cells were harvested inmid-log phase and normalized to 13 108 cells/ml. 50 ml

of cells in suspension were diluted in 950 ml of pH 2.6 glucose M9 media. After

3 hr of incubation, cells were diluted and plated on LB agar plates for cell

counts (Tucker et al., 2003).

Antibiotic Persistence

Cells were harvested in mid-log phase and normalized to 1 3 108 cells/ml.

Different dilutions were plated on LB-ampicillin plates. After 24 hr, a sterile

solution of 25 U of penicinillase was plated, and plates were re-incubated

for 24 hr. The appearance of colonies was determined, and persistence fre-

quency was determined using the base of the initial cell counts (Korch et al.,

2003).
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Figure 6. Multi-scale Characterization from Genotype to Phenotype

The multi-scale effects of the studied adaptive regulatory mutations in RNAP are summarized. The mutations alter the structural dynamics of RNAP, perturbing

the transcriptional regulatory network through the action of key transcription factors. The decrease in expression of hedging functions lowers the proteome and

energy allocation toward hedging functions and increases cellular growth. In turn, the cell can grow faster in conditions of steady-state growth, but is less fit under

environmental shifts and shocks.
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Analytics

Biomass was determined by measuring the absorbance of the culture at

600 nm using an equivalence of 0.429 gDW/l per optical density 600 unit.

Glucose and acetate were measured by high-pressure liquid chromatography

(HPLC) using refractive index (RI) detection by high-performance liquid chro-

matography (HPLC) (Waters) with a Bio-Rad Aminex HPX87-H ion-exclusion

column (injection volume, 10 ml) and 5 mM H2SO4 as the mobile phase

(0.5 ml/min, 45�C). Metabolomic sampling, extraction, and analysis were car-

ried out as described earlier by our group (McCloskey et al., 2014, 2015). t tests

were performed on log-normalized data with MetaboAnalyst (v.3.0) (Xia et al.,

2015), comparing wild-type to each of the mutants; to determine significance

between metabolite concentration levels, a p value cutoff of 0.01 after Bonfer-

roni correction was used.

RNA-Seq Libraries

Samples for RNA-sequencing were taken in mid-log phase of batch cultures

or during the steady state in chemostats. Cells were collected with QIAGEN

RNA-protect Bacteria Reagent and pelleted for storage at �80�C prior to

RNA extraction. Cell pellets were thawed and incubated with Readylyse Lyso-

zyme, SuperaseIn, Protease K, and 20% SDS for 20 min at 37�C. Total RNA
was isolated and purified using the QIAGEN RNeasy Mini Kit columns and

following vendor procedures. An on-column DNase treatment was performed

for 30 min at room temperature. RNA was quantified using a NanoDrop and

quality assessed by running an RNA-nano chip on a bioanalyzer. The rRNA

was removed using Epicenter’s Ribo-Zero rRNA Removal Kit for Gram-nega-

tive bacteria. Paired-end, strand-specific RNA-seq was performed following a

modified deoxy uridine triphosphate method (Latif et al., 2013).

Transcriptome Analyses

The obtained reads were mapped to the E. coli MG1655 genome

(NC_000913.2) using the short-read aligner Bowtie (http://bowtie-bio.

sourceforge.net) (Langmead, 2010) with two mismatches allowed per read

alignment. To estimate gene expression, fragments per kilobase of transcript

permillion of mapped reads (FPKM) values were calculated using cufflinks tool

and differential expression analysis was carried out using cuffdiff feature of the

same package using the upper quartile normalization (http://cufflinks.cbcb.

umd.edu/) (Trapnell et al., 2010).

Regulatory Network

Sigma factor use at promoters was obtained by combining annotations in

Cho et al. (2014) and EcoCyc (Keseler et al., 2013). The list of all transcription

factors and sRNAs was obtained from RegulonDB (Salgado et al., 2013). A

two-proportion z test with two-tailed comparisons was used to determine

significant differences in sigma factor usage among upregulated and downre-

gulated genes.

Computation of Maximum Non-growth Energy Use

The E. coli ME-model with all parameters as published in O’Brien et al. (2013)

was used. For all replicate cultivations, the measured growth rate, glucose up-

take rate, and acetate secretion ratewere fixed in themodel. Themaximumun-

accounted for energy use was then computed by maximizing the flux through

ATPmaintenance reaction, which hydrolyzes ATP. For a given strain, the unac-

counted for energy use is reported as the average across biological replicates.

Computation of Non-ME Transcriptome

The (protein coding) ME and non-ME transcriptome fractions were estimated

using FPKM and gene length. A gene’s transcriptome fraction was taken to be

the product of FPKM and the gene length, divided by the sum of this product

over all genes. The ME and non-ME transcriptome fractions were then calcu-

lated by summing the transcriptome fractions of all ME and non-ME genes,

respectively. Ranges are determined from the estimated lower and upper

FPKM values across different samples.

Computation of the Effects of Changes in Resource Allocation

Protein and energy not used toward cell growth are changeable variables in the

ME-model. These are varied to determine the growth rate, biomass yield, and

substrate uptake rate contours (Figures 5C and S5). The points and error bars

for wild-type and rpoB mutants are placed according to the unaccounted for
energy (Figure 5C) and change in non-ME transcriptome (Figure 5B). As we

do not explicitly know the proteome fraction devoted to growth in each strain,

we determine these valueswith two assumptions. First, we assume the change

in non-growth proteome is equal to the change in the non-ME transcriptome.

Second, we infer the non-growth proteome in the wild-type strain based on

its measured growth (which is why there is no y axis error bar for wild-type),

resulting in a value consistent with previous estimates (Scott et al., 2010).

Molecular Dynamics Simulations

Themolecular model of the E. coli RNAP elongation complex (EC) was created

using the crystal structure of the E. coli RNAP core enzymes (PDB: 3LU0

[Opalka et al., 2010]), the template and non-template DNA strands, and the

DNA:RNA hybrid helix (PDB: 2O5J [Vassylyev et al., 2007]). The model repre-

sented the open conformation of the RNAP EC, and we model selected sub-

strates into the active site to mimic the pre-translocated state (with ADE),

the post-translocated state (no additional substrate), and the post-translo-

cated pre-insertion state (with ATP) during the nucleotide-elongation cycle.

All three systems were neutralized with Mg2+ and K+ ions, initially placed in

positions occupied by metal ions in the crystal structure or according to the

electrostatic potential. The complexes were then solvated by well-equilibrated

water molecules with periodic boundary conditions. 200mMKCl was added to

the final solution. Minimization and equilibration were conducted by releasing

constraints step-by-step according to the protocol described in Eargle and

Luthey-Shulten (2012) and Lai et al. (2013). This procedure was shown to be

critical in maintaining stability of a complex molecular system with interactions

between protein, RNA, and DNA. Production runs were performed with 1-fs

time step under constant pressure (1 atm) and constant temperature (25�C)
using NAMD (v.2.9) (Phillips et al., 2005) and the CHARMM36 force field

(Best et al., 2012) A total of 140-ns molecular dynamics (MD) simulations of

the RNAP open complex were obtained for analysis, including 50 ns from

the pre-translocated state, 60 ns from the pre-translocated state, and 30 ns

from the pre-translocated, pre-inserted state.

Analysis of the Molecular Dynamics Trajectory

Analysis of the three MD trajectories showed consistent results. Therefore, we

present as the representative the results from the longest simulation of the

post-translocated state.

Interaction energy change between the b and b’ subunits after mutation was

calculated with the alanine scan script using PyRosetta (Chaudhury et al.,

2010; originally distributed by the Gray lab) (http://graylab.jhu.edu/pyrosetta/

downloads/pyrosetta_scripts/ala_scan.zip). We applied modifications of the

score function parameterized according to recently reported protocols (Gave-

nonis et al., 2014; Kortemme and Baker, 2002). To reduce the bias introduced

by a single static crystal structure, we performed the computational alanine

scan every 25 ps through the entire trajectories, resulting in a broad distribu-

tion of the ddG values. Although this ddG value was taken to be qualitative

conventionally (with ddG > 1 kcal/mol to be destabilizing), we emphasized

that it was the observed trend over the dynamical trajectory that correlated

with phenotypic fitness of the MAGE mutants.

Dynamic community analysis was done using algorithms described in Sethi

et al. (2009), with the NetworkView plugin (Eargle and Luthey-Shulten, 2012) in

VMD (Humphrey et al., 1996). The analysis was done for two chosen windows

(3–23 and 35–55 ns) in the 60-ns trajectory of the post-translocated state,

because the overall root-mean-square deviation of the RNAP complex sug-

gested that they might represent two different conformations during the

RNAP EC open-close conformational transition.
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Chipot, C., Skeel, R.D., Kalé, L., and Schulten, K. (2005). Scalable molecular

dynamics with NAMD. J. Comput. Chem. 26, 1781–1802.

Pirt, S.J. (1982). Maintenance energy: a general model for energy-limited and

energy-sufficient growth. Arch. Microbiol. 133, 300–302.

Prud’homme, B., Gompel, N., and Carroll, S.B. (2007). Emerging principles of

regulatory evolution. Proc. Natl. Acad. Sci. USA 104 (Suppl 1 ), 8605–8612.

Remold, S. (2012). Understanding specialismwhen the jack of all trades can be

the master of all. Proc. Biol. Sci. 279, 4861–4869.

Roberts, C.W., and Roberts, J.W. (1996). Base-specific recognition of the

nontemplate strand of promoter DNA by E. coli RNA polymerase. Cell 86,

495–501.

Saecker, R.M., Record, M.T., Jr., and Dehaseth, P.L. (2011). Mechanism of

bacterial transcription initiation: RNA polymerase - promoter binding, isomer-

ization to initiation-competent open complexes, and initiation of RNA synthe-

sis. J. Mol. Biol. 412, 754–771.

Salgado, H., Peralta-Gil, M., Gama-Castro, S., Santos-Zavaleta, A., Muñiz-
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