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Synthetic sequence entanglement
augments stability and containment
of genetic information in cells
Tomasz Blazejewski1,2*, Hsing-I Ho1*, Harris H. Wang1,3†

In synthetic biology, methods for stabilizing genetically engineered functions and
confining recombinant DNA to intended hosts are necessary to cope with natural
mutation accumulation and pervasive lateral gene flow. We present a generalizable
strategy to preserve and constrain genetic information through the computational
design of overlapping genes. Overlapping a sequence with an essential gene altered
its fitness landscape and produced a constrained evolutionary path, even for synonymous
mutations. Embedding a toxin gene in a gene of interest restricted its horizontal
propagation. We further demonstrated a multiplex and scalable approach to build
and test >7500 overlapping sequence designs, yielding functional yet highly divergent
variants from natural homologs. This work enables deeper exploration of natural
and engineered overlapping genes and facilitates enhanced genetic stability
and biocontainment in emerging applications.

P
rotein-encoding information is stored in
DNA as a series of trinucleotide codons.
Because protein translation can occur in
one of six coding frames, multiple proteins
could in principle be produced from dif-

ferent frames of a single DNA sequence. Em-
pirically, such overlapping genes are widely
found in biology from bacteria to humans (1–4).
Across microbial genomes, overlapping genes
are estimated to make up almost one-third of
all coding sequences (5). Although partial over-
laps are more typical, many completely over-
lapped genes have been described (1, 6) including

an example where three different proteins are
translated from separate frames of the same
mRNA (7).
An important consequence of overlapping

genes is that mutations will affect all protein
products simultaneously. Mutations that would
otherwise be neutral in one framemay no longer
be permitted if they create deleteriousmutations
in another frame, which constitutes a mecha-
nism to preserve sequence fidelity (8). In fact,
biological systems experiencing very high mu-
tation rates, such as viruses, tend to more fre-
quently contain overlapping genes (9). Past

synthetic efforts to maintain DNA sequence
fidelity have focused on reducing background
mutation rates (10, 11), eliminating mutation-
prone sequences (12), or increasing mutation
surveillance and correction (13). To prevent es-
cape of recombinant DNA into the wild, various
biocontainment strategies have also been devel-
oped (14).
Inspired by naturally overlapping genes that

safeguard against mutations, we devised a plat-
form, Constraining Adaptive Mutations using
Engineered Overlapping Sequences (CAMEOS),
to computationally design and experimentally test
de novo overlapping genes (Fig. 1A). The overall
computational objective is to identify co-encoding
variants of two proteins of interest that share
the same DNA sequence while minimizing dis-
ruptive residue changes in each protein sequence.
Protein function can be disrupted by individual
residue substitutions, insertions, or deletions, as
well as by changes in long-range interactions be-
tween residue pairs. The CAMEOS algorithm ad-
dresses both considerations in two steps (Fig. 1B
and fig. S1) (15). Briefly, a dynamic programming
algorithm first generates a double-encoding solu-
tion that is optimal according to a hiddenMarkov
model (HMM). High-performing suboptimal so-
lutions are subsequently generated by a stochastic
backtrace procedure. These HMM-derived solu-
tions are used as seeds to the second step, in
which pairwise long-range residue interactions
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Fig. 1. CAMEOS platform for designing
overlapping genes. (A) Schematic of
mutational restriction or horizontal transfer
confinement due to sequence entanglement
of two genes. (B) The CAMEOS algorithm
constructs a high-dimensional tensor
(colored cubes) parameterizing the cost of
paths (colored lines) through sequence space.
These paths are then sampled probabilistically
through a stochastic backtrace to form a
population of sequences whose long-range
interactions (gray arcs) are then optimized
greedily and iteratively. (C) Parameters
optimized by CAMEOS, with a schematic
of co-encoded ilvA and acpP genes and the
local negative energy of IlvA shown at the
right. (D) Growth of a genomically encoded
ilvA-acpP variant (IA-1) compared to that
of control strains and wild-type (WT) cells
after 14 hours in M9 minimal and LB rich
media. The ilvA-CD strain is a DilvA derivative
with a plasmid expressing a C-terminal ilvA
truncation variant at the overlap (residue 347).
Data are means ± SEM from three
independent biological replicates.
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modeled by aMarkov random field (MRF) (16, 17)
are iteratively optimized (fig. S2). We find that
minimizingdisruptions to long-range interactions
is key for generating functional proteins (fig. S3
and table S1). Finally, synonymousmutations are
made upstream of the overlap DNA region to op-
timize the Shine-Dalgarno sequence (18) for im-
proved translation of the embedded gene.
We evaluated CAMEOS by designing and test-

ing synthetic overlaps of essential and biosyn-
thetic genes (Fig. 1C). Because certain protein
regions such as intrinsically disordered regions
may be more favorable for co-encoding (19), we
explored different overlap positions and weights
(fig. S4), including cases where one protein se-
quence was kept wild-type. Among 20 redesigned
biosynthetic proteins, eight could rescue the
growth of corresponding auxotrophic Escherichia
coli bacteria in minimal media (fig. S5, A and B,
and table S2). In one design, DE14, CAMEOS iden-
tified multiple optimal regions for overlapping,
as shown by the ability to encode sequences sim-
ilar to two essential proteins into separate regions
of the functional cysteine biosynthesis gene cysJ
(fig. S5C). The wild-type copy was knocked out in
the cell to assess the co-encoded essential gene.
In another design, DE2, we successfully genera-
ted a chromosomal deletion of the essential acpP

gene in a strain containing overlapping ilvA and
acpP genes. This DE2 construct encoded a rede-
signed protein sequence of IlvA (threonine de-
aminase, used in isoleucine biosynthesis) and a
wild-type sequence of ACP (acyl-carrier protein,
involved in essential fatty acid biosynthesis). We
removed any plasmid-associated effects by ge-
nomically integrating this ilvA-acpP construct
into a strain with deleted wild-type ilvA and
acpP (fig. S6, A to C). The resulting strain (IA-1)
exhibited isoleucine prototrophy at a wild-type
level (Fig. 1D and fig. S6D), indicating func-
tional activity of both biosynthetic and essen-
tial proteins.
To verify that sequence entanglement could

restrict accumulation ofmutations, we performed
saturation mutagenesis on the genomic ilvA-
acpP locus (Fig. 2A). Fitness effects for the first
30 overlapping codons of ilvA were assessed
using oligo-recombineering and sequencing (20).
Many mutations, especially in the beginning of
the overlapping region, were found to incur a fit-
ness defect (Fig. 2B and fig. S7). Although ilvA
is not essential, 12.5% of ilvAmutations caused
severe growth defects (decrease in growth rate by
a factor of >10) (Fig. 2C). In contrast,mutagenesis
of ilvA-acpP in a control strain (IA-2) that has an
additional wild-type copy of acpP produced mu-

tants with practically no growth defects (Fig. 2,
B andC), which suggests that entanglementwith
the essential acpP gene renders the recoded ilvA
gene sensitive to mutations. In the entangled se-
quence, a reduction in the degeneracy of codons
was also observed, with 32% of synonymous
codons in ilvA exhibiting high variability in their
fitness impact because many were now delete-
rious (Fig. 2D). For example, the six leucine (L)
codons had highly variable fitness effects across
most of the overlap region analyzed (87%) (Fig. 2,
B andD). Serial passaging of IA-1 and IA-2 showed
that the overlap sequence remained unchanged
in IA-1 after 150 generations, whereas mutations
appeared in IA-2 by generation 50 (fig. S8). To-
gether, these results demonstrate that a gene that
overlaps with an essential gene is more evolu-
tionarily constrained.
Because functional testing of in silico designs

is a bottleneck, we devised a high-throughput
synthesis and selection strategy to experimen-
tally evaluate thousands of CAMEOS solutions.
We used cysJ, a flavin sulfite reductase subunit
(CysJ) for cysteine biosynthesis, and infA, the es-
sential translation initiation factor–1 (IF1), as a
test case by designing 7500 unique cysJ-infA
overlapping solutions (Fig. 3A). CAMEOSdesigns
were synthesized as a pool of 230–base pair
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Fig. 2. Sequence entanglement alters the protein fitness landscape.
(A) Saturation mutagenesis of the ilvA-acpP overlap region. (B) Fitness of all
single-codonmutants of ilvA-acpP in strains IA-1 and IA-2.The x axis represents
codon positions in the ilvA-coding frame; the y axis represents 64mutagenized
codons.White circles indicate wild-type ilvA codons. Heat map shows
mutational fitness impact; dark blue indicates severe effects. (C) Left: Average
fitness of all single codon mutants at each codon position in IA-1 (red) and
IA-2 (gray) strains. Error bars denote SEM of the 64 codon mutants. Right:

Distribution of fitness of all mutants in IA-1 and IA-2. (D) Left:Variance in fitness
between synonymous mutants at each ilvA codon position. As shown, 32%
of the codon substitutions in IA-1 have variances in fitness beyond the 95%
confidence interval of IA-2 variances. Right: Fraction of the overlap region
with highly variable fitness between synonymous codons for each amino acid
plotted against its codon degeneracy. Amino acid abbreviations: A, Ala;
C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn;
P, Pro; Q, Gln; R, Arg; S, Ser; T,Thr; V, Val; W,Trp; Y,Tyr; *, Stop.
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oligonucleotides (fig. S9 and table S6), cloned
into a pH9-cysJ-infAentry plasmid (fig. S10), and
transformed into a DcysJ-infA strain (CI-D) for
selection of functional CysJ and IF1 variants in
MOPS dropout media (fig. S10) (15). Accordingly,
CysJ and IF1 positive controls were only viable
under their respective selective conditions (fig.
S11). Plating of the variant library under double
selection for both CysJ and IF1 function produced
hundreds of colonies. We picked a number of
colonies and reverified their phenotypes clonally
(Fig. 3B) (15). Six unique sequences (CI-1 to CI-6)
encoding different functional CysJ and IF1 var-
iants were identified (Fig. 3C). Notably, all clones
exhibited higher homology to CysJ (mean resi-
due identity ~65%) than to IF1 (~34%) as well as
lower homology to wild-type E. coli CysJ and IF1
than most natural variants (fig. S12). Surpris-
ingly, functional IF1 variants contained residues
that were deleterious as single-residue substitu-
tions (20) (Fig. 3C). Analysis of the HMM like-
lihood scores of CysJ variants also revealedmany
single residues with predicted low fitness, which

suggests that epistasis was exploited in our
redesigned sequences. Structural modeling (21)
of the CI-1 pair showed good structural align-
ment with wild-type CysJ and IF1, comparable to
other natural orthologs (Fig. 3D). A large-scale
computational analysis to overlap 119 essential
with 49 biosynthetic E. coli proteins (15), which
yielded ~5.8million designs, showed that 531 of
5831 possible pairs (~9%) had pseudo-likelihood
scores better than those of the experimentally
verified cysJ-infA pairs (fig. S13). Accordingly, we
estimate that 80% of these biosynthetic proteins
could be encoded with at least one essential pro-
tein (fig. S14). Taken together, these results high-
light that functional overlaps may exist for many
gene pairs, which can be designed and evaluated
at high throughput.
Finally, we hypothesized that sequence en-

tanglement can also be used to generate bio-
containment barriers that suppress unintended
horizontal gene transfer (HGT). If a toxin gene
is embedded in a gene of interest (GOI), recipi-
ents that lack the antitoxin would be killed

when the co-acquired toxin is expressed (Fig.
1A). We thus tested designs of various bacterial
toxins embedded in the ilvA gene and found
ilvA-ccdB to be the best overlap pairing (Fig. 4,
A and B, and fig. S15) (15). We then transformed
conjugation-competent donors (D1, D2) express-
ing the antitoxin ccdA with plasmids carrying
either ilvA-ccdB (T1) or ilvA-ccdBstop (T2, con-
taining a nonsense ccdBmutation) and incubated
them with CcdA– (R1) or CcdA+ (R2) recipients.
As expected, CcdA+ recipients acquired ilvA-
ccdB or ilvA-ccdBstop plasmids from donors at
similarly high efficiencies. In contrast, CcdA–

recipients acquired ilvA-ccdB at a much re-
duced frequency (by a factor of >2700) relative
to the toxin-null ilvA-ccdBstop control (Fig. 4C),
thus demonstrating HGT suppression by CcdB-
mediated killing. Interestingly, recipients that
did acquire ilvA-ccdB remained auxotrophic
for isoleucine (Fig. 4D). Accordingly, we found
ilvA-ccdB mutations in these escapees that
inactivated both ilvA and ccdB function. These
results show that synthetic entanglement with a
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Fig. 3. High-throughput experimental evaluation of CAMEOS designs.
(A) Diagram of selection platform to identify functional cysJ-infA
variants. (B) Growth of cysJ-infA variants and controls under different
plate selections. CI-1, CI-2, and CI-3 are different isolates encoding
functional cysJ-infA variants. Control strains: Neg, cells containing
pH9-cysJneg-infAneg with nonsense mutations in both cysJ and infA
reading frames; CysJ+, cells expressing wild-type CysJ (from pH9-cysJwt);
IF1+, cells expressing wild-type IF1 (from pH9-cysJ-infAwt). Cultures
of each strain were spotted on selection plates over serial dilutions.
(C) Multiple sequence alignment of IF1 and CysJ encoded by six
functional cysJ-infA variants (CI-1 to CI-6). Colored shading represents
different degrees of sequence identity: orange, 100%; yellow, >60%.
Shown in panels below the sequence alignments are average fitnesses

of IF1 mutants at every position based on saturation mutagenesis
data (mean confidence interval) and single-residue substitution scores
of CysJ based on the HMM model (mean confidence interval). WT, E. coli
wild-type sequence; HMM, consensus sequence from HMM models;
mean AA, average fitness of 20 amino acids. (D) Left: Structural
modeling of CI-1 proteins shows concordance between predicted
(orange) and crystal (CysJ, yellow/purple; IF1, blue) structures. The
wild-type CysJ structure was generated by concatenating separately
crystalized domains (yellow, purple). Right: Global (top) and per-
residue (bottom) RMSD comparing IF1 from CI-1 with an ortholog
model (B. fragilis) and other crystal structures (denoted by an asterisk:
S. pneumoniae, M. tuberculosis) shows structural similarity to the
E. coli IF1.
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toxin suppresses HGT and yields escapees that
often carry nonfunctional GOI mutants.
This work describes the successful design of

two full-length proteins into the sameDNAunder
the constraints of overlap encoding. CAMEOS
enables large leaps in protein space that are chal-
lenging to achieve through stepwise evolution.
Our study goes beyond prior computational co-
encoding efforts that used simple first-order
BLOSUM substitution scores (22). Further im-
provements in MRF optimization (23) or explicit
integration of protein structure information (24),
along with higher-throughput gene synthesis
methods (25), will facilitate the generation of
longer overlapping genes with even higher per-
formance. Better translation tuning may improve
overlap designs, because suboptimal translation

may be a failuremode. Ultimately, these advances
can yield next-generation synthetic elements and
circuits that will operate only in predefined set-
tings, with greater robustness to mutations and
over longer time scales.
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Fig. 4. Entanglement with a toxin limits HGT. (A) A toxin or an inactivated variant (toxinstop)
is overlapped with ilvA to assess HGT. (B) The killing index is shown for four ilvA-toxin gene pairs.
Neg: parental strain without the ilvA-toxin construct. Data are means ± SEM from three independent
experiments. (C) Efficiency of HGTof pHT plasmids (T1/T2) between different donor (D1/D2) and
recipient (R1/R2) strains. Data are means ± SEM from three or four independent experiments.
(D) Growth of R1 transconjugant isolates that acquired ilvA-ccdB (T1) after HGT, compared to the
D1 donor strain (ilvA+) and the R1 recipient strain (DilvA) before HGT in M9 minimal media. Data
are means ± SEM of growth measurements after 16 hours from three to five independent colonies
and 28 R1 transconjugant isolates. Mutations identified in two R1 transconjugant isolates are
illustrated at the right. Tukey’s multiple comparison test was used to assess statistical significance
(n.s., not significant).
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Materials and Methods 
Strains and culturing conditions 

All E. coli strains used in the study are listed in Table S3 and are derived from the 
BW25113 parental background. Cells are grown in either LB rich media or M9 (prepared from 
BD Difco M9 Minimal Salts 5x; 1x M9 medium was supplemented with 2 mM MgSO4, 0.1 mM 
CaCl2 and 0.4% glucose) at 37 °C unless stated otherwise. For antibiotic selection, induction, or 
growth experiments, the concentrations used are: Carbenicillin (Carb) 50 µg/ml, Chloramphenicol 
(Cam) 20 µg/ml, Kanamycin (Kan) 50 µg/ml, Spectinomycin (Spec) 50 µg/ml, Bleocin (5 µg/ml), 
Anhydrotetracycline (aTc) 100 ng/ml.  
 
Plasmids used and generated 

Double encoded sequences were synthesized either by IDT as gBlocks or by Gen9 as 
GeneBytes and cloned under pTetO control in the pH9 plasmid. Plasmid pH9 was constructed by 
joining spectinomycin resistance cassette, p15A ori, tetR and pTetO promoter region from pdCas9-
bacteria (Addgene #44249) through isothermal assembly. To construct pH9-cysJwt plasmid, the 
wild-type cysJ sequence was amplified from the E. coli K-12 genome and cloned into pH9 plasmid 
behind the pTetO promoter. pH9-cysJ-infAwt was generated by swapping the designated cysJ 
region (residues 196-253) with overlapping wild-type infA sequence. pH9-cysJneg-infAneg was 
constructed by introducing multiple stop codons in both infA and cysJ reading frames from pH9-
cysJ-infAwt. The cysJ-infA overlapping sequence was also replaced by short sequences flanked by 
BsaI cutting sites and optimized RBS200 sequence to create a cysJ entry vector (pH9-cysJ-
infAentry) for subsequent cysJ-infA library construction. pBAD-infA was constructed by 
assembling wild-type infA under pBAD and AraC control, Sc101 ori, and Bleocin resistance 
cassette. RK2-mobilizable plasmids pHT-T1 and pHT-T2, encoding ilvA-ccdBwt and ilvA-ccdBstop 
were generated by modifying the pH9-ilvA-ccdBwt and pH9-ilvA-ccdBstop plasmids by replacing 
tetR with an origin of transfer (oriT) sequence from the RP4/RK2 conjugative plasmid to enable 
mobilization by RK2-mediated conjugation, which also leads to constitutive expression of the ilvA-
ccdB double-encoded gene. The pH-ccdA plasmid that expresses the anti-toxin ccdA was 
constructed to include a Cam resistance gene, tetR, and a constitutively expressing ccdA (under 
the BBa J23119 promoter), and a ColE1 ori. Most plasmids are generated (if not otherwise noted) 
by isothermal assembly. All plasmids are listed in Table S4.  
 
Functional assessment of double-encoded genes 

We first explored the ability of CAMEOS to yield functional proteins even in the absence 
of any overlap encoding to validate general model performance. Protein variants with a range of 
pseudolikelihood scores were assessed. We used amino acid biosynthesis and antibiotic resistance 
genes as test cases and synthesized variants without gene overlap. Biosynthetic gene variants (trpE, 
cysJ, ilvA) were tested in corresponding auxotrophic E. coli strains for the ability to rescue growth 
in minimal media. Chloramphenicol resistance gene variants were assessed for cell viability under 
antibiotic selection. For double-encoded candidates, constructs expressing different biosynthetic 
genes were transformed to corresponding auxotrophic strains (ΔilvA, ΔcysJ, and ΔtrpE), as shown 
in fig. S5A. Experiments to obtain growth curves were conducted as follows: Bacteria were grown 
in LB with antibiotic selection overnight at 37 °C, diluted 1:100 with fresh medium, grown for 1 
hour, and then induced with aTc for 2 hours for expression of the double-encoded biosynthetic 
gene. After induction, cells were collected by centrifugation and washed with PBS twice before 
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diluted 1:40 in M9 minimal medium containing Spec (50 µg/ml) and aTc (100 ng/ml). Cell growth 
at 37 °C was measured continuously using a platereader (BioTek Synergy H1) at optical density 
of 600nm for 15-20 hours in 20-minute intervals.  

 
Genomic knockout of essential genes 

Genomic deletion of essential genes (shown in fig. S5A) was carried out as following. Cells 
with plasmids containing recoded essential genes were made electrocompetent and transformed 
with pKD46 for recombineering. Subsequently, they were grown and λ-Red proteins were induced 
prior to transformation with a double-stranded linear cassette targeting the wild-type essential gene 
for knockout. Knockout cassettes were generated using a Cam resistance cassette as the template 
and primers with 50-bp overhang sequences homologous to the targeted genomic locus. Primers 
used were designed for complete deletion of the coding sequence. After electroporation of the 
knockout cassette, cells were recovered in SOC (NEB) with aTc (to induce the recoded essential 
gene) for 1 hour before plating on LB with Cam, Spec, and aTc at 30 °C. Colony PCR and Sanger 
sequencing was performed on resulting colony isolates to confirm the deletion.   
 
Construction of IA-1 and IA-2 strains 

To remove any effects from plasmid copy number variation of the ilvA-acpP construct, the 
entangled ilvA-acpP sequence was directly integrated into the E.coli genome through the 
clonetegration system (26) (shown in fig. S6A). DE2 and the tetR regulon region was cloned 
between multiple cloning sites in pOSIP-CT and transformed into ΔilvA. Chromosomal integration 
of the construct was induced by heat shock and successful integrants are selected on LB-Cam 
plates. Correct genomic insertion was confirmed by colony PCR and Sanger sequencing. Extra 
DNA sequence from the integrative plasmid backbone was excised from the chromosome through 
flipase induction as described (26). Cells with DE2 insertions were further transformed with 
pKD46 to knockout the wild-type acpP as described above. We were unable to obtain acpP 
knockouts after a few attempts in contrast to successful deletion of acpP in a strain containing a 
plasmid copy of DE2. We hypothesized that insufficient expression of DE2 from a single genomic 
copy (thus leading to an ACP limitation in the cell) may be the cause of this failure to delete the 
endogenous acpP gene, especially since ACP is the most abundant protein in E. coli. Therefore, 
we attempted to modify the internal RBS upstream of the embedded acpP to increase the 
translation strength using MAGE. By sequentially performing MAGE and acpP knockout, we 
successfully obtained clones with knockout of the wild-type acpP gene (fig. S6B-C), suggesting 
that indeed translation tuning may be important during some scenarios of double-encoding 
optimizations.  The pKD46 plasmid was subsequently cured to yield the strain, IA-1. The expected 
growth phenotype of IA-1 was verified in minimal medium (Fig. 1D, fig. S6D). IA-2 was 
generated by re-introducing the wild-type acpP gene into IA-1 by recombineering. We screened 
IA-2 isolates for Cam sensitivity and confirmed genomic restoration of wild-type acpP by colony 
PCR and Sanger sequencing.  
  
MAGE mutagenesis on IA-1 and IA-2 strains 

We performed saturation mutagenesis on the IA-1 and IA-2 strains using a version of 
MAGE (27) with higher efficiency. Tiling 90-bp single-stranded mutagenesis oligos (Table S5) 
were designed to target a 30-residue window of the ilvA-acpP genomic locus by flanking 
homology around consecutive degenerate trinucleotides (NNN) in the middle of each oligo. Oligos 
were designed to target the first 30 codons of the recoded ilvA reading frame of ilvA-acpP. In all, 
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30 pools of degenerate oligos were synthesized (Integrated DNA Technologies). In each oligo set, 
the last 5 nucleotides at the 3’ and 5’ ends were phosphorothioated for improved MAGE efficiency. 
Three successive rounds of MAGE were performed on each strain to elevate the rate of resulting 
mutagenesis. In each round, cells were electroporated with a pool of the 30 oligos (15 µM total) 
after λ-Red induction. The resulting mutant population was grown and sampled at various time 
points for deep sequencing. In detail, cells after the last recovery step were washed with PBS twice 
and subjected to growth in M9 supplemented with 0.5 µM isoleucine and aTc at 30 °C. At 
subsequent time points, 1 ml of cell culture was collected, and the remaining culture was diluted 
1:100 with fresh medium to re-grow. 
 
Fitness measurement of ilvA-acpP mutants   

Cell culture was collected at 0 hours, 18 hours, 42 hours, and 64 hours after MAGE 
mutagenesis. Genomic DNA was extracted by prepGEM kit (Zygem) and the ilvA-acpP 
overlapping region was amplified by PCR. A second PCR was performed to add adaptor sequences 
and barcodes compatible with Illumina sequencing kit (Illumina, Nextseq MO300). Reads were 
filtered for quality and variants were identified. Variants (>Q30) with mutations in more than one 
region of the ilvA-acpP sequence were excluded. Fitness of each variant was calculated by taking 
the relative abundance ratio between time points and normalizing against the relative abundance 
of the wildtype sequence. The median value of the calculated ratios across time points were used. 
Fitness data for IA-1 and IA-2 are provided in Table S7-S8.  
 
Design and construction of the cysJ-infA library 

7,500 cysJ-infA recoded variants were synthesized on a DNA microarray (Agilent 
Technology). In the general case, sequences were generated using HMM optimization followed 
by greedy optimization of MRF pseudolikelihoods. The relative importance of the infA and cysJ 
pseudolikelihoods for the optimization objective was controlled by a CysJ weight factor between 
0.0-1.0 that was randomly generated from a uniform distribution for each non-control sequence. 
4,063 of the 7,500 sequences were optimized for 1000 steps, and 1,924 sequences were chosen 
from earlier points (600 steps, 400 steps, 200 steps, and 50 steps) to evaluate the role of 
pseudolikelihood optimization. Similarly, 496 sequences were initialized with wild-type IF1 
amino acid sequences and synthesized over the course of in silico optimization. Several other 
control sequences were also synthesized: 519 sequences that were optimized only through HMM 
optimization; 250 sequences with wild-type IF1 amino acid sequence; 250 sequences with wild-
type CysJ amino acid. RBS designs were derived by evaluating all synonymous variants of cysJ 
27 bp upstream of the infA start site followed by manual refinement with the RBS Calculator. 

A previous saturation mutagenesis study of IF1 (19) revealed that truncation of the final 
two amino acids of the IF1 protein did not impact cell fitness. In our designs, these two residues 
were removed to reduce the number of nucleotides required for synthesis. Similarly, the stop codon 
for the infA gene was placed downstream of the insertion point on the pH9-cysJ-infAentry plasmid. 
The first 8 bases of the overlap region (ATGGCGAA), as well as the last 10 bases 
(CGTATTTAGA), were held constant during optimization, such that these flanking sequences 
could be used for PCR amplification during library construction. Before making these sequence-
level changes, we verified experimentally that the amino acid substitutions had no effect on the 
activity of E. coli CysJ protein. The 230bp oligomers were amplified by high fidelity polymerase 
(Q5 DNA polymerase, NEB) with minimum cycles to avoid over-amplification. PCR products 
were purified, digested with BsaI, and ligated with BsaI-treated pH9-cysJ-infAentry vector. Ligation 
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solution was transformed to commercial competent cells (MegaX DH10B, Invitrogen) following 
the manufacturer’s protocol. Cells after recovery were plated at the appropriate density on LB-
Spec plates to estimate cloning efficiency and library complexity. A library with at least 40x 
average coverage of each member was generated. The remaining cells were expanded in 50 ml of 
LB with selection overnight. The cysJ-infA library was extracted from the overnight culture with 
Midi-prep DNA extraction kit (Zymo Research) for subsequent testing.   
 
Selection of functional cysJ-infA variants 

Verification of functional infA designs requires an inducible expression platform of the 
essential IF1 protein. We transformed pBAD-infA and pKD46 to a ∆cysJ strain. Wild-type infA 
was deleted by recombineering under episomal IF1 induction to yield the CI-∆ strain. CI-∆ was 
confirmed to be not viable unless IF1 was induced (fig. S10A). CI-∆ was then transformed with 
the 7,500 member cysJ-infA library. Transformants were grown overnight in LB with arabinose 
induction and antibiotic selection. Overnight culture was diluted 1:100 with MOPS media 
(TEKNOVA) with no arabinose induction and grown for 1 hour at 37 °C. Expression of CysJ and 
IF1 variants were induced with aTc for another 3 hours before plating on selective conditions. 
Cells were plated at the density of 6x104 cells per 100 mm plate. Selective plates are made with 
MOPS defined medium with 1% glycerol as carbon source, and Spec and Bleocin for plasmid 
maintenance. Adjustment was made for different selective conditions as follows. CysJ selection: 
MOPS without cysteine, aTc, arabinose; IF1 selection: MOPS, aTc; CysJ/IF1 dual-selection: 
MOPS without cysteine, aTc. After 3 days of incubation at 30 °C, grown colonies were harvested 
either as a pool by scraping the whole plate or picked individually. The library was extracted by 
Mini-prep kit (Qiagen). For the pooled library, we amplified the designed overlapping region and 
quantified the abundance of each variant by deep sequencing (Illumina, Nextseq HO300). For 
clones identified from CysJ/IF1 selection, isolates were individually transformed back to the 
parental CI-∆ strain and revalidated for growth phenotype under CysJ/IF1 selection. Out of 36 
clones identified from the initial screen, seven (CI-1 to CI-6, CI-1 was identified twice) showed 
consistent growth under dual-selection. Two out of the six variants (CI-2 and CI-5) contained 
additional point mutations beyond their original designs, which were likely generated during gene 
synthesis or assembly, highlighting that additional variants were explored over the course of the 
experiment. 
 
Structural modeling of the identified CysJ and IF1 variants 

CysJ and IF1 sequences were modeled using the Phyre2 online tool (20). The tool was run 
in “intensive” modeling mode. Proteins were analyzed and visualized using VMD. Model overlay 
parameters were obtained through “measure fit” commands over aligned residues. 
  
Validation of ilvA-toxin constructs and quantification of degree of horizontal gene transfer  

We calculated the “killing index” of every ilvA-toxin construct by quantifying the activity 
of ilvA and toxins (relE, parE, yoeB, and ccdB) separately. In each ilvA-toxin pair, additional 
nonsense mutations were introduced in the toxin reading frame (toxinstop) without disrupting the 
corresponding residues in the ilvA frame (i.e. using synonymous mutations) (Fig. 4A). The 
function of each recoded ilvA variant could thus be tested without the confounding impact of the 
co-encoded toxin. Each construct was then transformed to the ilvA knockout strain and their growth 
was measured in minimal media (fig. S15A). To then examine the function of the overlapping 
toxin, we reverted the nonsense mutations in the toxin back to the wild-type sequence (toxinwt) and 
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tested each construct in wild-type cells. Changes in cell growth were used to determine cellular 
toxicity due to the toxin (fig. S15B). The ilvA activity was determined based on how well ilvA-
toxinstop constructs can rescue the growth phenotype of a ∆ilvA strain in minimal media. The toxin 
activity was determined by measuring their growth inhibition in wild-type cells when 
overexpressed on a plasmid. Killing index was calculated from OD600 cell density data after 16-
hour of growth in LB and M9 media of cells containing ilvA-toxinstop or ilvA-toxinwt and wild-type 
cells using the following equation:  

 

OD600M9 �
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖-𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

WT �  OD600LB  �
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖-𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤

WT ��  

 
For quantification of horizontal gene transfer, donor strains were all conjugated with 

RK2/RP4 plasmid to mediate subsequent DNA transfer. Donor and recipient strains were grown 
overnight in rich medium with antibiotics selection. Strains were collected, washed and re-
suspended in 1/10th of the original volume of PBS, and mixed at 1:1 ratio. The cell mixture was 
spotted on LB plates at 37 °C for 2 hours, and subsequently collected and plated at multiple 
densities under different antibiotic selection. For mixture of strains derived from ΔilvA, recipients 
were labeled with Bleocin resistance gene to distinguish from the donors. We used Bleo or 
Bleo+Spec dual selection to quantify conjugation events. For mixture of ΔilvA and wildtype 
derived strains, all recipient strains have Kan resistance gene, but only those receiving the 
mobilized plasmid can grow under Kan and Spec selection. Hence, the ratio of colony numbers 
grown on dual versus single selection plates can be calculated to infer the efficiency of horizontal 
gene transfer. 
 
Data sources 

In experiments involving cysJ and ilvA, publicly available HMMs and multiple sequence 
alignments (MSA) were used. For HMMs, we made use of TIGRfam and Pfam models. MRFs 
were trained based on MSAs available from the Gremlin2 project https://gremlin2.bakerlab.org/ 
preds.php?db=ECOLI. MRFs were trained on these MSAs using Gremlin code kindly shared by 
the Baker Lab (University of Washington, for request http://openseq.org/gremlin.php). Subsequent 
computational analyses used InterPro as a source of multiple sequence alignments (accessed on 
4/24/2019) and CCMPred as a MRF optimization algorithm.  
 
Code availability 

CAMEOS is implemented in Julia and Python. The code needed to run the HMM and MRF 
optimization process is available at www.github.com/wanglabcumc/CAMEOS. Commit version: 
a8d1ad3.  
  

https://gremlin2.bakerlab.org/%20preds.php?db=ECOLI
https://gremlin2.bakerlab.org/%20preds.php?db=ECOLI
https://gremlin2.bakerlab.org/%20preds.php?db=ECOLI
https://gremlin2.bakerlab.org/%20preds.php?db=ECOLI
http://openseq.org/gremlin.php
http://openseq.org/gremlin.php
http://www.github.com/wanglabcumc/CAMEOS
http://www.github.com/wanglabcumc/CAMEOS
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Supplementary Text 
Overview of the CAMEOS computational algorithm 

To design overlapping sequences, the Constraining Adaptive Mutations using Engineered 
Overlapping Sequences (CAMEOS) algorithm proceeds in two steps (fig S1). First, we seek to 
tractably and efficiently generate double-encoding solutions that exhibit high homology to target 
sequences: this is achieved by a first-order optimization process that is parameterized by Hidden 
Markov Models (HMM). In order to generate a diverse set of possible solutions, we then perform 
probabilistic backtraces to generate a stochastic population of relatively high-quality solutions. 
Second, we use Markov Random Field (MRF) models to optimize long-range interactions between 
residues, which are not captured by HMM models and yet are essential for protein functions, in 
the HMM-derived solutions to yield final refined overlapping solutions. Each of these steps is 
described in greater detail below. 
 
First-order optimization: HMM parametrization and stochastic backtrace 

The first step of CAMEOS operates on tetra-nucleotides units, each of which fully 
encapsulates two codons in overlapping frames (fig. S1A-B). The optimization goal is thus to find 
the optimal set of tetra-nucleotides suitable for both co-encoded proteins. This is a first-order 
optimization as we do not yet consider residue-residue epistatic interactions (incorporated in the 
second step of CAMEOS). Thus in this step, we assume that the optimal residue at each position 
can be determined independently of the rest of the protein sequence. Despite this simplifying 
assumption, optimization is still non-trivial as each tetra-nucleotide overlaps with other tetra-
nucleotides through its first/fourth position so that globally optimal first-order decisions must 
balance the score of a current tetra-nucleotide with the potential scores of downstream tetra-
nucleotides. 

If we simplify downstream effects by assuming that the first/fourth bases for a given tetra-
nucleotide are fixed, optimization of the entire tetra-nucleotide can be achieved by using a HMM 
to score residue translations produced by each of the sixteen di-nucleotide possibilities for the 
second/third base (fig. S1B). The log-likelihood values of every possible tetra-nucleotide can be 
easily computed from a Hidden Markov Model (HMM) of the corresponding protein family (fig. 
S1C). Since tetra-nucleotides are not independent, naïve optimization would require considering 
every possible combination of first/fourth bases across all tetra-nucleotides; this would lead to an 
exponential number of possible combinations of sequences of a given length (fig. S1D). However, 
we observe that optimization decisions in the second tetra-nucleotide unit depend only on the 
fourth base of the first tetra-nucleotide unit. An optimal 7-letter sequence must extend earlier 
optimal tetra-nucleotides whose sole distinguishing characteristics in terms of downstream 
optimization decisions is the score up to this point and its final nucleotide: “A”, “C”, “G”, or “T”. 
This is true for all subsequent positions: an optimal subsequence of length n is obtained by 
optimally extending an optimal subsequence of length n-3 distinguished by its earlier scores and 
its terminal letter, “A”, “C”, “G”, or “T” (fig. S1E). The optimization algorithm therefore finds 
optimal subsequences ending in “A”, “C”, “G”, or “T” for each position by extending earlier 
subsequences ending with these nucleotides. If the current tetra-nucleotides is at the end of the 
entire sequence, we can determine the globally optimal sequence by comparing the score of 
optimal subsequences across all terminal letters (fig. S1F).  

Internally, optimal sequences are constructed as paths between scored subsequences 
distinguished by their terminal nucleotide. If we wish to generate a set of high-scoring but sub-
optimal set of sequences for experimental validation (i.e. instead of always connecting maximally 
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scoring subsequences), we can slightly alter the algorithm to stochastically incorporate high-
scoring but sub-optimal subsequences into the sequence generation procedure. This procedure, 
which we refer to as a “stochastic backtrace” (fig. S1G), allows a significantly larger sequence 
space to be explored, which is useful in cases where we wish to evaluate many sequence variants. 

In practice, this step involves starting at the initial starting point and considering the scores 
of all feasible transitions from each state parameterization. We can either choose the next state 
(and corresponding sub-sequence to add to the solution) probabilistically at each step or 
deterministically most of the time with an occasional stochastic switch to a probabilistic mode. 
This mostly deterministic strategy can still generate a diversity of solutions as suboptimal decisions 
at given points (such as adding an unnecessary insertion) can lead to very different downstream 
optima. In general, the probabilistic backtrace is therefore done by making deterministic decisions 
with probability = 0.9, meaning that roughly 10% of the time, a stochastic decision is taken. 

While other stochastic backtrace algorithms could be considered, the strategy implemented 
here is able to generate a diverse set of solutions. This diversity is obtained due to the large possible 
set of transitions at each position (i.e. transitions across nucleotides, states, and positions) and 
inherent flexibility in possible solutions. Indeed, many overlapping sequence solutions appear to 
have similar log-likelihoods based on HMM parameterizations. We provide an annotated iPython 
notebook (https://www.github.com/wanglabcumc/CAMEOS/guide.ipynb) to illustrate the basic 
premise of this part of the algorithm. This code is a Python implementation of the generalized 
CAMEOS code, which is written in Julia, but is simpler to read and understand at the cost of slower 
speed. 

 
Second-order optimization: greedy optimization through MRFs 

Long-range interactions between residues are vital to protein structure and function. 
Sequences optimized only through first-order considerations are likely to miss essential stabilizing 
contacts. The first-order optimization is therefore used to seed the second optimization step for 
long-range interactions as parameterized by a MRF. From a seed population of thousands of 
stochastic backtrace solutions derived from the first CAMEOS step, we use a greedy optimization 
procedure in the second CAMEOS step and iterate for a fixed number of optimizations (fig. S1H).  

The optimization procedure is very closely related to iterated conditional modes (ICM), a 
general strategy for optimizing trained MRFs. The algorithm is greedy: at each optimization step, 
for each individual sequence in the population, we select three contiguous nucleotides (i.e. tri-
nucleotides) from a random position along the length of the overlapping sequence (disregarding 
codon positioning), and consider all possible tri-nucleotides (not resulting in a stop codon) that 
could replace the current one. The score of the tri-nucleotide, which is assessed as a sum of MRF 
pseudolikelihoods across both frames, is determined assuming the sequence of the rest of the 
sequence remains fixed. The sum of pseudolikelihoods can also be weighted, in order to favor one 
protein’s scores over the other. At each step, the maximal scoring tri-nucleotide is used to continue 
the optimization process through subsequent iterations. 

The difference between this strategy and standard ICM is that the position in the sequence 
to be optimized is chosen stochastically. This is done because the residue identities and therefore 
“node values” of the MRF are linked between sequences, meaning that individual node values 
cannot be modified in isolation. In theory, optimization can be performed deterministically by 
considering every tri-nucleotide at every position of the sequence, but this would repeat 
calculations (e.g. as there is a defined set of amino acids that can result from a codon beginning in 
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“A”). We therefore choose positions at random and empirically observe convergence upon 
optimization.  
 
Other key CAMEOS features 

Insertions: The algorithm described above does not consider residue insertions, which may 
increase the flexibility of the sequence generation procedure and yield in higher-quality sequences. 
We thus incorporate insertions by scoring tetra-nucleotides across every possible alignment 
between the two proteins, an operation requiring O(mn) computation, where m and n are the 
lengths of each protein. The probability of an insertion is defined by the same protein-specific 
HMM, and optimal subsequences considered for extension are now defined not only by their 
terminal letter but also by their insertion state (true/false) and position in both proteins. We note 
that though HMMs can incorporate insertions and deletions, MRFs are only able to consider 
insertions/deletions already present in the multiple sequence alignment they were trained on. In 
cases where an HMM has generated an insertion, we consider the HMM solution to have a better 
model of this likelihood than its corresponding MRF, and the sequence at this inserted position is 
not allowed to change over the course of greedy optimization rounds.  

Other frames: While we have only illustrated co-encoding the +1 frame, our algorithm is 
applicable to all frames. Consider two proteins D1 and D2.  In a +2 encoding, the first nucleotide 
of D2's codons immediately precedes the first nucleotide of the D1 codon. This is equivalent to a 
+1 encoding where D1 and D2 are switched; this is how a +2 encoding is optimized in our model. 
This observation is also true of -1 and -2 encodings, which also share the fundamental property 
that codons can be optimized as tetra-nucleotides, and are therefore amenable to the same 
optimization algorithm. The -3 frame can be optimized trivially: codons perfectly overlap as 
reverse complements in both frames, so locally optimal codon decisions are globally optimal 
according to a first-order model and no recurrence is required. 

Optimal regions of overlap: We found that an important factor to consider when designing 
overlapping sequences is the "local energy" of a protein across a given region. This metric simply 
sums node weights (corresponding to metrics of conservation for amino acids at a given position) 
and edge weights (constituting the long-range interactions at each position) originating from this 
region. If a region captures the entire length of a protein, then this "local energy" corresponds 
exactly to the MRF "energy" of the protein itself. We note that due to a missing intractable partition 
function, comparisons of energy values between proteins are not meaningful. However, a 
visualization of the energy of a single target protein across windows of length equal to that of the 
query protein being embedded can qualitatively reveal regions in the target protein that are 
expected to be amenable for incorporation of the query protein. Given that the density and 
importance of long-range interactions can vary across the length of a protein, it may often be 
advantageous to target specific regions of a protein for overlap encoding. In cases where specific 
regions are targeted for overlap, we simply penalize the cost of incorporating residues outside of 
this range with a very large constant. During optimization, residues outside of the desired range 
are not incorporated due to their high cost. 
 
Generality of sequence entanglement using CAMEOS 
 To assess factors impacting the applicability of CAMEOS to further protein pairs, we 
performed a large-scale computational survey of the algorithm’s performance. Beginning with a 
list of 213 essential genes and 71 biosynthetic genes, we queried InterPro (28) to automatically 
identify protein families, selecting the most specific subfamily in cases of multiple hits. Following 
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guidelines for MRF training using GREMLIN, we used the ratio of non-redundant sequences in 
this alignment to the square root of the length of the input protein as a threshold for family 
inclusion. A conservative threshold of 250 was used to select 49 biosynthetic proteins. Given the 
large number of essential genes, we selected 119 essential genes with a more conservative 
threshold of 500 (Table S9). Sequences belonging to the targeted protein family were downloaded 
from InterPro and aligned using FAMSA (29). Outliers in the multiple sequence alignment were 
then excluded using OD-seq (30) and a standard deviation threshold of 2. Sequences were then 
aligned again using FAMSA. Multiple sequence alignment positions in which less than 50% of 
entries were aligned amino acids were excluded. To speed up the MRF training step of our 
computational analysis, we used CCMPred (31), a tool that applies the same algorithm as 
GREMLIN but with significantly improved speed due to more efficient computation. HMM 
models were trained on the same alignments as the corresponding MRFs using HMMER. 

Using our CAMEOS code (at https://www.github.com/wanglabcumc/CAMEOS/), we 
tested co-encoding of all 5,831 pairwise combinations of essential and biosynthetic genes. This 
analysis, which involved optimization of ~5.8 million sequences, required approximately 3 days 
of computational analysis across 384 CPU threads. Local energy minima for various embedding 
lengths were estimated based on a random subset of 2,000 sequences for each target alignment. 
For each pair of MRFs, we initialized 500 solutions and optimized sequences for 1000 steps. As 
we were only interested in top-scoring variants, we culled sequences with worse-than-median 
scores at step 250 and step 500. In order to compare optimized sequences with natural variants, we 
compared final pseudolikelihood values with the distribution of pseudolikelihood scores of 
sequences in the multiple sequence alignment used to train our Markov Random Field models. 
These were found to follow approximately Gaussian distributions, but in order to further improve 
the robustness of our analysis, we used the median and median absolute deviation (MAD) with 
Gaussian scale factor as an estimator of the location (µ) and scale parameters (σ), of our observed 
distributions. 

For each double-encoding solution, we determine the sum of the Gaussian distributions for 
each protein pair (essential and biosynthetic). According to standard definitions, the sum of 
Gaussian distributions for the two protein pairing, 𝑁𝑁(µ1,σ1) and 𝑁𝑁(µ2,σ2) have a mean of µ1 +
µ2 and a standard deviation of �σ12 + σ22. We assessed the z-score of our solutions according to 
this distribution with the expectation that sequences closer to the median are more likely to be 
functional. A few solutions generated with different z-scores were depicted in fig. S14. In general, 
codons with high conservation tend to be maintained or altered with similar amino acids after 
optimization, suggesting the effectiveness of our algorithm. We find that a dominant factor 
influencing the z-score of tested pairs was the length of encoded sequence overlap (R2=0.56, fig. 
S13B). The axes of the heatmap in fig S13A are sorted by length, with the top-right portion of the 
heatmap reflecting high z-scores in the case of long proteins embedding in longer proteins. 

We select a z-score of 3.0, similar to the minimal z-score across all synthesized array 
variants of 2.84 that was achieved in our original analysis, but more conservative than the z-score 
of 3.635 possessed by the functional variant CI-4. We find that this z-score is in the 9th percentile 
of all tested pairs, with 531 gene pairs exhibiting z-scores that outperform this mark. We note that 
the minimal z-score of 3.635 across functional infA-cysJ design pairs would be outperformed by 
794 gene pairs (~13.6% of all tested pairs). In the case of a more stringent z-score of 2.0, we find 
that 235 gene pairs (~4.0%) would meet the threshold.  

This computational simulation, benchmarked against a double-encoding solution that has 
been demonstrated to function, suggests that hundreds more gene pairs could be suitably targeted 

https://www.github.com/wanglabcumc/CAMEOS/
https://www.github.com/wanglabcumc/CAMEOS/
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by our algorithm. We further find that with the use of a z-score threshold of 3.0, 41 of 49 
biosynthetic genes could be encoded with at least one essential gene, and that 44 of 119 tested 
essential genes could be encoded with at least one biosynthetic gene.  
 Interested in features that might explain the residual spread after accounting for length, we 
directly examined variations in the residuals by protein family and found that deviations appeared 
to be the result of protein family-specific variations (fig. S13D, E). We observe first that the value 
of the residual for any gene pair (S, B) is tightly related to the sum of means across all gene pairs 
containing S and all gene pairs containing B (fig. S13F). We further observed that residual values 
of +1 and +2 encoding for identical gene pairs were also tightly correlated (fig. S13G). These 
observations suggest that double-encoding success is largely dependent on fundamental features 
of the protein families being encoded as opposed to complex nucleotide and codon-specific 
interactions between gene pairs.  
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Figure S1. A step-by-step illustration of the CAMEOS approach to designing overlapping 
sequences. Nucleotides are colored: adenine (A, red), cytosine (C, orange), guanine (G, cyan), 
thymine (T, green). Steps in the algorithm are described from (A) to (H). 
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Figure S2. Iterative optimization improves MRF scores. Optimization of the summed MRF 
pseudolikelihoods of overlapping genes is demonstrated through iterative greedy search for 
improved long-range interactions during CAMEOS. The sequences are initialized with their 
optimized HMM values and therefore exhibit high MRF pseudolikelihood values. These values 
rapidly improve and converge (e.g. after 1000 iterations in this cysJ-infA run) by the end of the 
optimization.  
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Figure S3. Incorporating MRF models improves the design of functional variants. Growth 
curves of clones with different designed variants optimized using HMM or MRF models are 
shown. (A) ilvA, trpE, and cysJ HMM-based designs were tested in auxotrophic E. coli strains for 
isoleucine (∆ilvA), tryptophan (∆trpE), and cysteine (∆cysJ), respectively, in minimal media. The 
cat (chloramphenicol acetyltransferase) HMM-based designs were tested in wild-type E. coli in 
LB with standard chloramphenicol selection. (B) MRF-based designs for ilvA, trpE, cysJ and cat 
with different MRF pseudolikelihood scores are tested in corresponding strains as in (a) and shown 
in the four subpanels. Overall, MRF designs show significantly more functional variants with 
improved activity compared to HMM designs. Data shown are the means of 3-6 independent 
biological replicate experiments.  
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Figure S4. Local energy distribution across designed proteins. The local energies for the CysJ 
and TrpE proteins are shown on the left and right panels, respectively. The local energy is defined 
as the sum of the node and edge weights in a Markov Random Field over a 100 residue window 
for a multiple sequence alignment of the family. The mean is plotted as a black line, with grey 
regions indicating two standard deviations from the mean. Regions with low values (here most 
prominently on the N- and C-termini of proteins) likely exhibit low residue-level conservation 
and/or reduced long-range interactions, suggesting that the region is a promising target for 
sequence modification and gene overlap designs. The infA gene encoding IF1 in our cysJ-infA 
construct is placed starting at residue 246 of CysJ, shown as a red dashed line in the left panel. 
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Figure S5. Functional validation of multi-encoding constructs. (A) Experimental strategy for 
validating double-encoding constructs for biosynthetic genes or essential genes. (B) Results for 
testing the function of co-encoded amino acid biosynthetic genes (ilvA and cysJ) are shown as 
growth curves in corresponding auxotrophic strains (∆ilvA and ∆cysE) in minimal media. Data are 
the mean of 3-5 independent biological replicate experiments. (C) Sequence layout of clone DE14 
showing a recoded cysJ with two different essential genes (rpmC and rpmD) embedded in separate 
regions of the cysJ. The natural (wild-type) and recoded sequences are indicated in the sequence 
alignments.  
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Figure S6. Validation of the IA-1 clone containing a functional and chromosomally 
integrated ilvA-acpP variant. (A) Construction steps used to generate the IA-1 strain to 
genomically integrate the ilvA-acpP cassette and remove the endogenous acpP gene. (B) Design 
of PCR primers for verifying genomic acpP deletion. (C) The table summarizes the expected PCR 
amplicon size. A gel showing diagnostic PCRs from a wild-type (WT) strain and two isolates (ko1 
and ko2) of the acpP::cmR knockout strain (IA-1). (D) Growth of IA-1 compared to control strains 
and wild-type (WT) cells in M9 minimal media and LB rich media are shown in left and right 
panels, respectively. The ΔilvA contains a genomic knockout of ilvA. The pH9-ilvA-CΔ plasmid 
expresses a C-terminus truncation variant (residues 345-514) of IlvA. The 347-514 region is where 
the overlapping encoding occurs in the ilvA-acpP design. The ilvA-acpP variant significantly 
rescues growth of a ΔilvA strain in M9 in contrast to the control strains, thus demonstrating the 
functional activity of the recoded sequence. Growth curves are mean of 3 to 5 independent 
experiments.  
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Figure S7. Heatmap of fitness of single-codon mutants from saturation mutagenesis of the 
ilvA-acpP construct in IA-1 and IA-2 strains. X-axis represents codon positions in the acpP 
reading frame. Y-axis represents 64 possible codons grouped by their amino acids. Circles indicate 
the wild-type acpP codons. Since the ilvA coding frame was targeted for saturation mutagenesis 
with NNN-oligos in the ilvA-acpP construct, not all acpP codons could be generated (shown in 
grey box). Fitness values are calculated with respect to wild-type sequence. Fitness measurements 
below the detection limit of deep sequencing are colored dark blue. 
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Figure S8.  Recoded ilvA-acpP resists accumulation of natural mutation under serial growth 
in laboratory conditions. Three independent replicate cultures (A, B, C) of IA-1 and IA-2 are 
subject to growth and daily serial dilution over 150 generations. At generations 50, 100, and 150, 
we randomly isolated 8 colonies from each culture and examined their ilvA-acpP region by Sanger 
sequencing. The y-axis is the percent of colonies that had the initial ilvA-acpP sequence.  
  



 
 

19 
 

 
 
Figure S9. Variants in the cysJ-infA library share similar ranges of pseudolikelihood scores 
with natural IF1 and CysJ sequences.  A Gaussian kernel density estimation is used to display 
the density of pseudolikelihood values of CAMEOS-designed IF1 or CysJ in the cysJ-infA library 
(orange) compared to naturally-occurring sequences in the multiple sequence alignment used to 
train the Markov Random Field (cyan). The natural sequence distributions are symmetric and 
appear roughly normally distributed. The mean (red dotted line) and two times the standard 
deviation from the mean (black dashed lines) are shown for each natural protein variant 
distribution. Our synthesized variants span a range of pseudolikelihood values (by design) with 
significant overlap with the naturally-occurring sequences. A small fraction of high 
pseudolikelihood valued synthetic variants are not shown in the plot to improve visualization. 
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Figure S10. A high-throughput selection strategy to test functional IF1 and optimize internal 
RBS sequences. (A) A wild-type IF1 (encoded by infA) is placed in inducible plasmids pH9 or 
pBAD. Growth of a ∆infA strain can be significantly improved by induction with either arabinose 
(ara) or anhydrotetracycline (aTc) to express the wild-type infA. (B) Verifying internal RBS 
sequences for effective expression of co-encoded infA. Embedded wild-type infA was constructed 
with different upstream RBS (still within cysJ gene) in the pH9-cysJ-infAWT plasmid. RBS variants 
are named by their relative in silico predicted strength of translation initiation. The RBS200 
sequence (corresponding to an output of 200 from the RBS Calculator) showed the best translation 
of embedded infA and was used subsequently in the pH9-cysJ-infA variant library. Each variant is 
tested for the ability to rescue growth of an ∆infA strain. Growth curves are the mean of 3 
independent biological replicates.  
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Figure S11. Selection of functional CysJ and IF1 variants. Allele frequencies of positive control 
clones, CysJ+ and IF1+, were measured before (0h) and after 48-hour selection (48h). At 0h, the 
relative abundance of CysJ+ and IF1+ are the same. After selection, each population was enriched 
in their corresponding condition but selected against in the other condition. IF1 selection relies on 
growth on MOPS plate with cysteine and without arabinose supplement (no IF1 induction) while 
CysJ selection relies on growth on MOPS plate without cysteine and with arabinose (to induce 
IF1).    
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Figure S12. Sequence identities of natural and synthetic CysJ and IF1 proteins. Histograms 
of sequence identities from naturally occurring CysJ (left, cyan) and IF1 (right, orange) proteins 
are shown. These protein sequences were taken from the multiple sequence alignment used to train 
the MRFs, which parameterized the sequence design of the cysJ-infA array library. Sequence 
identity in the case of CysJ is shown only for the region that was recoded. Red dashed lines in both 
histograms indicate regions of sequence identity exhibited by variants that were found to be 
functional (CI-1 to CI-6) 
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Figure S13. Computational Survey of CAMEOS performance. (A) A heatmap of best-achieved 
z-scores across pairs of essential (x-axis) and biosynthetic (y-axis) proteins. Proteins on axes are 
sorted by length. (B) Linear regression between the Z-score of a protein pair’s CAMEOS 
embedding and the length of the overlap region. (C) Linear regression between the Z-score of a 
protein pair’s CAMEOS embedding and the minimum number of residue contacts in a window of 
the embedding size across the length of the protein. (D) Violin plots of the distributions of residual 
values from the fit in (B) across all essential protein pairs for each biosynthetic protein family. (E) 
Violin plots of the distributions of residual values from the fit in (B) across all biosynthetic protein 
pairs for each essential protein family. (F) Linear regression of the residuals from the analysis in 
(B) and the means of residual values in (D)/(E) demonstrating high-concordance between the sum 
of these means and the residual deviation for individual protein pairs. (G) Linear regression of the 
residuals from the analysis in (B) across frames, demonstrating high correlation between possible 
frames. 
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Figure S14. Illustrative examples of double-encoding solutions. Overlap encodings and their 
translations are shown in both frames for several solutions resulting from our large-scale 
computational analysis of protein pairs. Selected protein pairs are groS/purD, acpS/panC, 
prmC/aroB, and bioB/pgk. Histograms demonstrate the natural sequence range of 
pseudolikelihoods derived from multiple sequence alignments. A single line demarcates the 
median of the distribution with smaller dashed lines showing 2 MAD deviations from the median. 
A long dashed line indicates the pseudolikelihood of the considered sequence. Protein translations 
are demonstrated in two frames: red letters indicate residues that differ from those found in the top 
BLAST-hit for the embedded portion of the protein. Purple letters indicate similar amino acids at 
those positions, while black letters are identical. The intensity of the blue/orange coloring in the 
box at each position reflects the conservation of the amino acids (defined as sequence entropy), 
with darker shading indicating more conserved residues. 
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Figure S15. ilvA-toxin constructs display varying activity level of ilvA and toxins individually. 
(A) Growth curves in M9 minimal media of different ilvA-toxinstop constructs in a ∆ilvA strain are 
displayed. Different ilvA recodings show varying degrees of IlvA function. (B) Growth curves in 
rich media of different ilvA-toxin constructs in a wildtype strain are displayed. Different encoded 
toxins show varying degrees of growth inhibition. Data shown are the means of 3 independent 
biological replicate experiments.  
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