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The Omicron (B.1.1.529) variant of SARS-CoV-2 (severe acute respiratory syndrome
coronavirus 2) was only recently detected in southern Africa, but its subsequent
spread has been extensive, both regionally and globally'. It is expected to become
dominant in the coming weeks?, probably due to enhanced transmissibility. A striking
feature of this variant is the large number of spike mutations® that pose a threat to the
efficacy of current COVID-19 (coronavirus disease 2019) vaccines and antibody
therapies*. This concernis amplified by the findings from our study. We found
B.1.1.529 to be markedly resistant to neutralization by serum not only from
convalescent patients, but also fromindividuals vaccinated with one of the four
widely used COVID-19 vaccines. Even serum from persons vaccinated and boosted
with mRNA-based vaccines exhibited substantially diminished neutralizing activity
against B.1.1.529. By evaluating a panel of monoclonal antibodies to all known epitope
clusters on the spike protein, we noted that the activity of 17 of the 19 antibodies
tested were eitherabolished or impaired, including ones currently authorized or
approved for use in patients. In addition, we also identified four new spike mutations
(S371L,N440K, G446S,and Q493R) that confer greater antibody resistance to
B.1.1.529. The Omicron variant presents a serious threat to many existing COVID-19
vaccinesand therapies, compelling the development of new interventions that
anticipate the evolutionary trajectory of SARS-CoV-2.

The COVID-19 (coronavirus disease 2019) pandemicrages on, as the
causative agent, SARS-CoV-2 (severe acute respiratory syndrome
coronavirus 2), continues to evolve. Many diverse viral variants have
emerged (Fig.1a), each characterized by mutationsin the spike protein
that raise concerns of both antibody evasion and enhanced transmis-
sion. The Beta (B.1.351) variant was found to be most refractory to
antibody neutralization* and thus compromised the efficacy of vac-
cines®” and therapeutic antibodies. The Alpha (B.1.1.7) variant became
dominant globally in early 2021 due to an edge in transmission® only
to be replaced by the Delta (B.1.617.2) variant, which exhibited even
greater propensity to spread coupled with amoderate level of antibody
resistance’. Then came the Omicron (B.1.1.529) variant, first detected in
southernAfricainNovember 2021*'°" (Fig. 1a). It has since spread rap-
idlyintheregion, aswell as to over 60 countries, gaining tractioneven
wherethe Deltavariantis prevalent. The short doubling time (2-3 days)
of Omicron cases suggestsit could become dominant soon. Moreover,
its spike protein contains an alarming number of >30 mutations (Fig.1b
and Extended DataFig.1), includingatleast15in the receptor-binding

domain (RBD), the principal target for neutralizing antibodies. These
extensive spike mutations raise the specter that current vaccines and
therapeutic antibodies would be greatly compromised. This concern
isamplified by the findings we now report.

Serum neutralization of B.1.1.529

We first examined the neutralizing activity of serum collected in the
Spring of 2020 from COVID-19 patients, who were presumably infected
withthe wild-type SARS-CoV-2 (9-120 days post-symptoms) (see Meth-
ods and Extended Data Table 1). Samples from 10 individuals were
tested for neutralization against both D614G (WT) and B.1.1.529 pseu-
doviruses. While robust titers were observed against D614G, a signifi-
cant drop (>32-fold) in IDs, (50% infectious dose) titers was observed
against B.1.1.529, with only 2 samples showing titers above the limit of
detection (LOD) (Fig. 1c and Extended Data Fig. 2a). We then assessed
the neutralizing activity of sera from individuals who received one of
the four widely used COVID-19 vaccines: BNT162b2 (Pfizer, 15-213 days
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post-vaccination), mMRNA-1273 (Moderna, 6-177 days post-vaccination),
Ad26.COV2.S (Johnson &Johnson, 50-186 days post-vaccination), and
ChAdOx1nCoV-19 (AstraZeneca, 91-159 days post-vaccination) (see
Methods and Extended Data Table 2). In all cases, a substantial loss
in neutralizing potency was observed against B.1.1.529 (Fig. 1d and
Extended DataFig.2b-f). For the two mRNA-based vaccines, BNT162b2
and mRNA-1273, a >21-fold and >8.6-fold decrease in ID5, was seen,
respectively. We note that, for these two groups, we specifically chose
samples with high titers such that the fold-change in titer could be
better quantified, so the difference in the number of samples having
titers above the LOD (6/13 for BNT162b2 versus 11/12 for mRNA-1273)
may be favorably biased. Within the Ad26.COV2.S and ChAdOx1nCOV-
19 groups, all samples were below the LOD against B.1.1.529, except for
two Ad26.COV2.S samples from patients with a previous history of
SARS-CoV-2infection (Fig.1d). Collectively, these results suggest that
individuals who were previously infected or fully vaccinated remain at
risk for B.1.1.529 infection.

Booster shots are now routinely administered in many countries 6
months after full vaccination. Therefore, we also examined the serum
neutralizing activity ofindividuals who had received three homologous
mRNA vaccinations (13 with BNT162b2 and 2 with mRNA-1273, 14-90
days post-vaccination). Every sample showed lower activity in neutral-
izing B.1.1.529, with a mean drop of 6.5-fold compared to WT (Fig. 1d).
Although all samples had titers above the LOD, the substantial loss in
activity may still pose arisk for B.1.1.529 infection despite the booster
vaccination.

We then confirmed the above findings by testing a subset of the
BNT162b2 and mRNA-1273 vaccinee serum samples using authen-
tic SARS-CoV-2isolates: wild type and B.1.1.529. Again, a substantial
decreasein neutralization of B.1.1.529 was observed, with mean drops of
>6.0-fold and >4.1-fold for the fully vaccinated group and the boosted
group, respectively (Fig. le).

Antibody neutralization of B.1.1.529

To understand the types of antibodies in serum that lost neutralizing
activity against B.1.1.529, we assessed the neutralization profile of 19
well-characterized monoclonal antibodies (mAbs) to the spike protein,
including17 directed to RBD and 2 directed to the N-terminal domain
(NTD). We included mAbs that have been authorized orapproved
for clinical use, either individually or in combination: REGN10987
(imdevimab)®2, REGN10933 (casirivimab)'?, COV2-2196 (tixagevimab)®,
COV2-2130 (cilgavimab)®®, LY-CoV555 (bamlanivimab)™, CB6 (etese-
vimab)®, Brii-196 (amubarvimab)'¢, Brii-198 (romlusevimab)', and
S309 (sotrovimab)¥. We also included other mAbs of interest: 910-30%,
ADG-2¥, DH1047%°,52X259%, and our antibodies 1-20, 2-15,2-7,4-18,5-7,
and 10-40**%*, The footprints of mAbs with structures available were
drawninrelation to the mutations found in B.1.1.529 RBD (Fig.2a) and
NTD (Fig. 2b). Therisk to each of the 4 classes” of RBD mAbs, as well as
to the NTD mAbs, was immediately apparent. Indeed, neutralization
studies on B.1.1.529 pseudovirus showed that 17 of the 19 mAbs tested
lost neutralizing activity completely or partially (Fig. 2c and Extended
Data Fig. 3). The potency of class 1and class 2 RBD mAbs all dropped
by >100-fold, as did the more potent mAbs in RBD class 3 (REGN10987,
COV2-2130,and 2-7). The activities of S309 and Brii-198 were spared. All
mADbsinRBD class 4 lost neutralization potency against B.1.1.529 by at
least 10-fold, as did mAb directed to the antigenic supersite (4-18) or
the alternate site?® (5-7) on NTD. Strikingly, all four combination mAb
drugs in clinical use lost substantial activity against B.1.1.529, likely
abolishing or impairing their efficacy in patients.

Approximately10% of the B.1.1.529 viruses in GISAID' (Global Initiative
onSharing All Influenza Data) also containanadditional RBD mutation,
R346K, which is the defining mutation for the Mu (B.1.621) variant?.
We therefore constructed another pseudovirus (B.1.1.529+R346K)
containing this mutation for additional testing using the same panel of
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mADbs (Fig. 2d). The overall findings resembled those already shownin
Fig.2c, withthe exceptionthat the neutralizing activity of Brii-198 was
abolished. Infact, nearly the entire panel of antibodies was essentially
rendered inactive against this minor form of the Omicron variant.

The fold changes in IC,, of the mAbs against B.1.1.529 and
B.1.1.529+R346K relative to D614G are summarized in the first two
rows of Fig. 3a. Theremarkable loss of activity observed for all classes
of mAbs against B.1.1.529 suggest that perhaps the same is occurring
in the serum of convalescent patients and vaccinated individuals.

Mutations conferring antibody resistance

To understand the specific B.1.1.529 mutations that confer antibody
resistance, we next tested individually the same panel of 19 mAbs
against pseudoviruses for each of the 34 mutations (excluding D614G)
foundinB.1.1.529 or B.1.1.529+R346K. Our findings not only confirmed
therole of known mutations at spike residues142-145, 417,484, and 501
in conferring resistance to NTD or RBD(class 1 or class 2) antibodies*
but also revealed several mutations that were previously not known
to have functionalimportance toneutralization (Fig. 3a and Extended
DataFig. 4). Q493R, previously shown to affect binding of CB6 and
LY-CoV555% as well as polyclonal sera?, mediated resistance to CB6
(class1)aswellasto LY-CoV555and 2-15 (class 2), findings that could be
explained by the abolishment of hydrogen bonds due to the long side
chainofarginine and inducedsteric clashes with CDRH3 in these anti-
bodies (Fig. 3b, left panels). Both N440K and G446S mediated resist-
ance to REGN10987 and 2-7 (class 3), observations that could also be
explained by sterichindrance (Fig.3b, middle panels). The most strik-
ing and perhaps unexpected finding was that S371L broadly affected
neutralization by mAbsinall 4 RBD classes (Fig. 3aand Extended Data
Fig.4). While the precise mechanism of this resistance is unknown, in
silicomodeling suggested two possibilities (Fig. 3b, right panels). First,
in the RBD-down state, mutating Ser to Leu results in an interference
with the N343 glycan, thereby possibly altering its conformation and
affecting class 3 antibodies that typically bind this region. Second, in
the RBD-up state, S371L may alter the local conformation of the loop
consisting of S371-S373-S375, thereby affecting the binding of class 4
antibodies that generally target a portion of this loop®. It is not clear
how class1and class 2 RBD mAbs are affected by this mutation.

Evolution of SARS-CoV-2 to antibodies

To gain insight into the antibody resistance of B.1.1.529 relative to
previous SARS-CoV-2 variants, we evaluated the neutralizing activ-
ity of the same panel of neutralizing mAbs against pseudoviruses for
B.1.1.7%, B.1.526°, B.1.429*, B.1.617.2°, P.1*?, and B.1.351®. It is evident
fromthese results (Fig. 4 and Extended Data Fig. 5) that previous vari-
antsdeveloped resistance only to NTD antibodies and class1and class
2 RBD antibodies. Here B.1.1.529, with or without R346K, has made a
big mutational leap by becoming not only nearly completely resistant
toclassland class 2 RBD antibodies, but also substantial resistance to
both class3and class4 RBD antibodies. B.1.1.529 isnow the most com-
plete “escapee” from neutralization by currently available antibodies.

Discussion

The Omicronvariantstruck fear almost as soon as it was detected to be
spreading in South Africa. That this new variant would transmit more
readily has come true in the ensuing weeks?. The extensive mutations
found inits spike protein raised concerns that the efficacy of current
COVID-19 vaccines and antibody therapies might be compromised.
Indeed, in this study, sera from convalescent patients (Fig. 1c) and
vaccinees (Figs. 1d and 1e) showed markedly reduced neutralizing
activity against B.1.1.529. Other studies have found similar losses** %,
These findings are in line with emerging clinical data on the Omicron



variant demonstrating higher rates of reinfection" and vaccine break-
throughs. Infact, recent reports showed that the efficacy of two doses
of BNT162b2 vaccine has dropped from over 90% against the original
SARS-CoV-2 strain to approximately 40% and 33% against B.1.1.529 in
the United Kingdom?® and South Africa*’, respectively. Even a third
booster shot may not adequately protect against Omicroninfection®*,
although the protection against disease still makes it advisable to
administer booster vaccinations. Vaccines that elicited lower neutral-
izing titers*>* are expected to fare worse against B.1.1.529.

Thenature of thelossinserum neutralizing activity against B.1.1.529
could be discerned from our findings on a panel of mAbs directed to
the viral spike. The neutralizing activities of all four major classes of
RBD mAbs and two distinct classes of NTD mAbs are either abolished
orimpaired (Figs.2c and 2d). Inaddition to previously identified muta-
tions that confer antibody resistance*, we have uncovered four new
spike mutations with functional consequences. Q493R confersresist-
ance to some class 1and class 2 RBD mAbs; N440K and G446S confer
resistance to some class 3 RBD mAbs; and S371L confers global resist-
ance to many RBD mAbs via mechanisms that are not yet apparent.
While performing these mAb studies, we also observed that nearly all
the currently authorized or approved mAb drugs are rendered weak
or inactive by B.1.1.529 (Figs. 2c and 3a). In fact, the Omicron variant
that contains R346K almost flattens the antibody therapy landscape
for COVID-19 (Fig.2d and 3a).

The scientific community has chased after SARS-CoV-2 variants fora
year.Asmore and more of them appeared, our interventions directed
to the spike became increasingly ineffective. The Omicron variant has
now put an exclamation mark on this point. It is not too far-fetched
to think that this SARS-CoV-2 is now only a mutation or two away
from being pan-resistant to current antibodies, either monoclonal or
polyclonal. We must devise strategies that anticipate the evolutional
direction of the virus and develop agents that target better conserved
viral elements.
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Fig.1|Resistance of B.1.1.529 to neutralization by sera. a, Unrooted
phylogenetictree of B.1.1.529 with other major SARS-CoV-2 variants. b, Key
spike mutations found in the virusesisolated in the major lineage of B.1.1.529
aredenoted. ¢, Neutralization of D614 G and B.1.1.529 pseudoviruses by
convalescent patientsera.d, Neutralization of D614G and B.1.1.529
pseudoviruses by vaccinee sera. Within the four standard vaccination groups,
individuals that were vaccinated without documented infection are denoted as
circlesandindividuals that were both vaccinated and infected are denoted as
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relative to neutralization of D614G is denoted, with resistance colored red and
sensitization colored green. b, Modeling of critical mutationsin B.1.1.529 that
affect antibody neutralization.
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Methods

Datareporting

No statistical methods were used to predetermine sample size. The
experiments were not randomized and the investigators were not
blinded to allocation during experiments and outcome assessment.

Serum samples

Convalescent plasma samples were obtained from patients with
documented SARS-CoV-2 infection. These samples were collected at
the beginning of the pandemicin early 2020 at Columbia University
Irving Medical Center, and therefore are assumed to be infection by the
wild-type strain of SARS-CoV-2*. Sera from individuals who received
two or three doses of mMRNA-1273 or BNT162b2 vaccine were collected
at Columbia University Irving Medical Center at least two weeks after
the final dose. Sera from individuals who received one dose of Ad26.
COV2.S or two doses of ChAdOx1 nCov-19 were obtained from BEI
Resources. Someindividuals were also infected by SARS-CoV-2in addi-
tion to the vaccinations they received. Note that, whenever possible,
we specifically chose samples with high titers against the wild-type
strain of SARS-CoV-2 such that thelossin activity against B.1.1.529 could
be better quantified, and therefore the titers observed here should
be considered in that context. All collections were conducted under
protocols reviewed and approved by the Institutional Review Board
of Columbia University. All participants provided written informed
consent. Additional information for the convalescent samples can be
foundin Extended Data Table 1and for vaccinee samples can be found
in Extended Data Table 2.

Monoclonal antibodies

Antibodies were expressed as previously described?, by synthe-
sis of heavy chain variable (VH) and light chain variable (VL) genes
(GenScript), transfection of Expi293 cells (Thermo Fisher), and affin-
ity purification from the supernatant by rProtein A Sepharose (GE).
REGN10987, REGN10933, COV2-2196, and COV2-2130 were provided
by Regeneron Pharmaceuticals, Brii-196 and Brii-198 were provided
by Brii Biosciences, CB6 was provided by Baoshan Zhang and Peter
Kwong (NIH), and 910-30 was provided by Brandon DeKosky (MIT).

Celllines

Expi293 cells were obtained from Thermo Fisher (Catalog #A14527), Vero
E6 cells were obtained from ATCC (Catalog# CRL-1586), HEK293T cells
were obtained from ATCC (Catalog# CRL-3216), and Vero-E6-TMPRSS2
cells were obtained from JCRB (Catalog# JCRB1819). Cells were pur-
chased from authenticated vendors and morphology was confirmed
visually prior to use. All cell lines tested mycoplasma negative.

Variant SARS-CoV-2 spike plasmid construction

An in-house high-throughput template-guide gene synthesis
approach was used to generate spike genes with single or full muta-
tions of B.1.1.529. Briefly, 5’-phosphorylated oligos with designed
mutations were annealed to the reverse strand of the wild-type spike
gene construct and extended by DNA polymerase. Extension prod-
ucts (forward-stranded fragments) were then ligated together by
Taq DNA ligase and subsequently amplified by PCR to generate vari-
ants of interest. To verify the sequences of variants, next generation
sequencing (NGS) libraries were prepared following a low-volume
Nextera sequencing protocol* and sequenced on the lllumina Miseq
platform (single-end mode with 50 bp R1). Raw reads were processed
by Cutadapt v2.1* with default setting to remove adapters and then
aligned to reference variants sequences using Bowtie2 v2.3.4* with
default setting. Resulting reads alignments were then visualized in
Integrative Genomics Viewer*® and subjected to manual inspection to
verify the fidelity of variants. Sequences of the oligos used in variants
generation are provided in Extended Data Table 3.

Pseudovirus production

Pseudoviruses were produced in the vesicular stomatitis virus (VSV)
background, in which the native glycoprotein was replaced by that
of SARS-CoV-2 and its variants, as previously described®. Briefly,
HEK293T cells were transfected with a spike expression construct
with polyethylenimine (PEI) (1 mg/mL) and cultured overnight at
37 °C under 5% CO,, and then infected with VSV-G pseudotyped
AG-luciferase (G*AG-luciferase, Kerafast) one day post-transfection.
Following 2 h of infection, cells were washed three times, changed
to fresh medium, and then cultured for approximately another 24
h before supernatants were collected, centrifuged, and aliquoted
to useinassays.

Pseudovirus neutralization assay

All viruses were first titrated to normalize the viral input between
assays. Heat-inactivated sera or antibodies were first serially diluted
in 96 well-plates in triplicate, startingat 1:100 dilution for sera and
10 pg/mL for antibodies. Viruses were thenadded and the virus-sample
mixture was incubated at 37 °C for1h. Vero-E6 cells (ATCC) were then
added at adensity of 3 x10* cells perwell and plates were incubated at
37°Cforapproximately 10 h. Luciferase activity was quantified by using
the Luciferase Assay System (Promega) according to the manufacturer’s
instructions using the software SoftMax Pro 7.0.2 (Molecular Devices,
LLC). Neutralization curves and IC;, (50% inhibitory concentration)
values were derived by fittinganon-linear five-parameter dose-response
curve to thedata in GraphPad Prism version 9.2.

Authenticvirusisolation and propagation

AuthenticB.1.1.529 was isolated from aspecimen from the respiratory
tract of a COVID-19 patient in Hong Kong by Kwok-Yung Yuen and col-
leagues at the Department of Microbiology, The University of Hong
Kong. Isolation of wild-type SARS-CoV-2 was previously described®.
Viruses were propagated in Vero-E6-TMPRSS2 cells and sequence con-
firmed by next-generation sequencing prior to use.

Authentic virus neutralization assay

To measure neutralization of authentic SARS-CoV-2 viruses,
Vero-E6-TMPRSS2 cells were first seeded in 96 well-platesin cell culture
media (Dulbecco’s Modified Eagle Medium (DMEM) +10% fetal bovine
serum (FBS) +1% penicillin/streptomycin) overnight at 37 °Cunder 5%
CO,toestablishamonolayer. The following day, sera or antibodies were
serially diluted in 96 well-plates in triplicate in DMEM + 2% FBS and
then incubated with 0.01 MOI (multiplicity of infection) of wild-type
SARS-CoV-2 or B.1.1.529 at 37 °C for 1 h. Sera were diluted from 1:100
dilution and antibodies were diluted from 10 pg/mL. Afterwards, the
mixture was overlaid onto cells and further incubated at 37 °C under
5% CO,forapproximately 72 h. Cytopathic effects were then scored by
plaque assayinablinded manner. Neutralization curves and ICy, values
were derived by fitting anon-linear five-parameter dose-response curve
to the datain GraphPad Prism version 9.2.

Antibody footprint analysis and RBD mutagenesis analysis

The SARS-CoV-2 spike structure used for displaying epitope foot-
prints and mutations within emerging strains was downloaded from
PDB (PDBID: 6ZGE). The structures of antibody-spike complexes
were also obtained from PDB (7L5B for 2-15, 6XDG for REGN10933
and REGN10987, 7L2E for 4-18, 7RW2 for 5-7, 7C01 for CB6, 7ZKMG for
LY-COV555, 7CDI for Brii-196, 7KS9 for 910-30, 7LD1 for DH1047, 7RAL
for $2X259, 7LSS for 2-7, and 6WPT for S309). Interface residues were
identified using PISA*® using default parameters. The footprint for
each antibody was defined by the boundaries of all epitope residues.
The border for each footprint was then optimized by ImageMagick
7.0.10-31 (https://imagemagick.org). PyMOL 2.3.2 was used to perform
mutagenesis and to make structural plots (Schrédinger).
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Extended Data Table 1| Demographics and vaccination information for serum samples from convalescent patients used in
this study

Convalescent Sample Days post-symptoms  Age Gender
C1 18 57 Female
Cc2 25 51 Male
C3 29 71 Female
C4 32 50 Male
C5 35 59 Male
C6 120 56 Male
Cc7 105 54 Female
Cc8 77 51 Female
C9 18 79 Male

C10 9 45 Male
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Extended Data Table 2 | Demographics and vaccination information for serum samples from vaccinated individuals used in
this study

Vaccine Sample Vaccine type Lt poslta\;:z(:::)tlon el Docu'::;:::; I?OVID Age Gender
Moderna vaccinee #1 mRNA-1273 31 No 72 Male
Moderna vaccinee #2 mRNA-1273 19 No 38 Female
Moderna vaccinee #3 mRNA-1273 6 No 42 Male
Moderna vaccinee #4 mRNA-1273 81 No 40 Female
Moderna vaccinee #5 mRNA-1273 123 No 40 Female
Moderna vaccinee #6 mRNA-1273 177 No 40 Female
Moderna vaccinee #7 mRNA-1273 29 No 57 Female
Moderna vaccinee #8 mRNA-1273 74 No 57 Female
Moderna vaccinee #9 mRNA-1273 32 No 66 Female
Moderna vaccinee #10 mRNA-1273 72 No 63 Male
Moderna vaccinee #11 mRNA-1273 74 No 68 Female
Moderna vaccinee #12 mRNA-1273 58 No 46 Female
Pfizer vaccinee #1 BNT162b2 21 No 62 Male
Pfizer vaccinee #2 BNT162b2 36 No 62 Male
Pfizer vaccinee #3 BNT162b2 26 No 38 Male
Pfizer vaccinee #4 BNT162b2 66 No 38 Male
Pfizer vaccinee #5 BNT162b2 22 No 57 Female
Pfizer vaccinee #6 BNT162b2 61 No 57 Female
Pfizer vaccinee #7 BNT162b2 20 No 55 Male
Pfizer vaccinee #8 BNT162b2 16 No 64 Female
Pfizer vaccinee #9 BNT162b2 32 No 68 Male
Pfizer vaccinee #10 BNT162b2 20 No 35 Male
Pfizer vaccinee #11 BNT162b2 15 No 48 Female
Pfizer vaccinee #12 BNT162b2 21 No 45 Male
Pfizer vaccinee #13 BNT162b2 213 Yes 66 Male
IJ&J vaccinee #1 (BEI Cat. #NRH-10818) Ad26.COV2.S 55 Yes 50 Female
IJ&J vaccinee #2 (BEI Cat. #NRH-10819) Ad26.COV2.S 61 Yes 50 Female
J&J vaccinee #3 (BEI Cat. #NRH-10835) Ad26.COV2.S 186 Unknown 43 Female
J&J vaccinee #4 (BEI Cat. #NRH-10845) Ad26.COV2.S 69 Unknown 28 Female
J&J vaccinee #5 (BEI Cat. #NRH-10823) Ad26.COV2.S 50 No 42 Female
lJ&J vaccinee #6 (BEI Cat. #NRH-10834) Ad26.COV2.S 175 Unknown 43 Female
J&J vaccinee #7 (BEI Cat. #NRH-10839) Ad26.COV2.S 39 No 47 Male
J&J vaccinee #8 (BEI Cat. #NRH-10844) Ad26.COV2.S 60 Unknown 28 Female
J&J vaccinee #9 (BEI Cat. #NRH-10824) Ad26.COV2.S 51 No 43 Male
IAZ vaccinee #1 (BEI Cat. #NRH-10817) ChAdOx1 nCoV-19 158 Unknown 73 Male
IAZ vaccinee #2 (BEI Cat. #NRH-10814) ChAdOx1 nCoV-19 152 Unknown 36 Female
IAZ vaccinee #3 (BEI Cat. #NRH-10815) ChAdOx1nCoV-19 159 Unknown 36 Female
IAZ vaccinee #4 (BEI Cat. #NRH-10811) ChAdOx1 nCoV-19 142 Yes 26 Female
IAZ vaccinee #5 (BEI Cat. #NRH-3083) ChAdOx1 nCoV-19 91 Unknown 56 Female
Boosted sera #1 mMRNA-1273/mRNA-1273 28 No 66 Female
Boosted sera #2 BNT162b2/BNT162b2 30 No 68 Male
Boosted sera #3 BNT162b2/BNT162b2 14 No 64 Female
Boosted sera #4 BNT162b2/BNT162b2 34 No 55 Male
Boosted sera #5 BNT162b2/BNT162b2 34 No 45 Male
Boosted sera #6 BNT162b2/BNT162b2 15 No 50 Female
Boosted sera #7 BNT162b2/BNT162b2 15 No 48 Female
Boosted sera #8 BNT162b2/BNT162b2 29 No 71 Male
Boosted sera #9 BNT162b2/BNT162b2 90 No 59 Male
Boosted sera #10 BNT162b2/BNT162b2 33 No 45 Male
Boosted sera #11 BNT162b2/BNT162b2 87 No 66 Female
Boosted sera #12 BNT162b2/BNT162b2 84 No 26 Male
Boosted sera #13 mMRNA-1273/mRNA-1273 23 No 28 Female
Boosted sera #14 BNT162b2/BNT162b2 14 No 78 Male
Boosted sera #15 BNT162b2/BNT162b2 14 No 75 Female




Extended Data Table 3 | Oligos used to construct spike expression plasmids

Oligo name Targeted mutations Oligo sequence
O_single_mutant1 AB7V ATGTGACCTGGTTCCATGTGATCCATGTGTCTGGCACCAATGGCACC
O_single_mutant2  Del69-70 CTGGTTCCATGCCATCTCTGGCACCAATGGCAC
O_single_mutant3  [T95I CTTTGCCAGCATCGAGAAGAGCAACATCATC
O_single_mutant4  |Del143-145 TGTAATGACCCATTCCTGGGACACAAGAACAACAAGTCCTGGATG
O_single_mutant5  |G142D GTAATGACCCATTCCTGGACGTCTACTACCACAAG
O_single_mutant6  Del211 ACACACACCAATCCTGGTGAGGGACCTG
O_single_mutant7  [L212I CACACCAATCAACATCGTGAGGGACCTGCC
O_single_mutant8  [ns214EPE ACCAATCAACCTGGTGAGGGAGCCCGAGGACCTGCCACAGGGCTT
O_single_mutant9  |G339D CTGTGTCCATTTGACGAGGTGTTCAATGCCAC
O_single_mutant10  R346K TGTTCAATGCCACCAAGTTTGCCTCTGTCTATGCCTG
O_single_mutant11 |S371F CTCTGTGCTCTACAACTTTGCCTCCTTCAGCAC
O_single_mutant12 |S371L CTCTGTGCTCTACAACCTGGCCTCCTTCAGCAC
O_single_mutant13 |S373P CTCTACAACTCTGCCCCCTTCAGCACCTTCAAG
O_single_mutant14 |S375F CAACTCTGCCTCCTTCTTCACCTTCAAGTGTTATGG
O_single_mutant15 | K417N CCCCTGGACAAACAGGCAACATTGCTGACTACAACTACAAACTGC
O_single_mutant16  N440K CCTGGAACAGCAACAAGCTGGACAGCAAGGTG
O_single_mutant17  |G446S GGACAGCAAGGTGAGCGGCAACTACAACTAC
O_single_mutant18 [S477N GATTTACCAGGCTGGCAACACACCATGTAATG
O_single_mutant19 [T478K CAGGCTGGCAGCAAGCCATGTAATGGAGTGGA
O_single_mutant20 E484A GTAATGGAGTGGCCGGCTTCAACTGTTAC
O_single_mutant21 | Q493R GTTACTTTCCACTCAGATCCTATGGCTTCCAAC
O_single_mutant22  |G496S CACTCCAATCCTATAGCTTCCAACCAACCAATG
O_single_mutant23 Q498R CAATCCTATGGCTTCAGACCAACCAATGGAGTGGG
O_single_mutant24 N501Y CTTCCAACCAACCTACGGAGTGGGCTACCAACC
O_single_mutant25 Y505H AATGGAGTGGGCCACCAACCATACAGG
O_single_mutant26  [T547K CTTCAATGGACTGAAGGGCACAGGAGTGCTGAC
O_single_mutant27 H655Y CTGATTGGAGCAGAGTACGTGAACAACTCCTATG
O_single_mutant28 N679K CCAGACCCAGACCAAGAGCCCAAGGAGGGCA
O_single_mutant29 |P681H CCCAGACCAACAGCAGAAGGAGGGCAAGGTCTGTGGC
O_single_mutant30 N764K GTACCCAACTTAAGAGGGCTCTGACAGGC
O_single_mutant31 D769Y GACACCTCCAATCAAGTACTTTGGAGGCTTC
O_single_mutant32 | N856K GTGCCCAGAAGTTCAAGGGACTGACAGTGCTG
O_single_mutant33 |Q954H CAAGATGTGGTGAACCACAATGCCCAGGCTCTG
O_single_mutant34 N969K GCAACTTTCCAGCAAGTTTGGAGCCATCTCCTC
O_single_mutant35 L981F GTGCTGAATGACATCTTCAGCAGACTGGACAAGGTGGAGG
O_multiple_oligo1 A67V, Del69-70 TGGTTCCATGTGATCTCTGGCACCAATGG
O_multiple_oligo2 T95I CTTTGCCAGCATCGAGAAGAGCAAC

O_multiple_oligo3

G142D, Del143-145

GACCCATTCCTGGACCACAAGAACAACAAGTC

O_multiple_oligo4

L212l, Ins214EPE

CACACACCAATCATCGTGAGGGAGCCCGAGGACCTGCCACAGGGCTTC

O_multiple_oligo5 G339D TGTGTCCATTTGACGAGGTGTTCAATG
O_multiple_oligo6 S371L, S373P, S375F TGTGCTCTACAACCTGGCCCCCTTCTTCACCTTCAAGTGTTATG
O_multiple_oligo7 K417N GGACAAACAGGCAACATTGCTGACTACA

O_multiple_oligo8

N440K, G446S

GCAACAAGCTGGACAGCAAGGTGAGCGGCAACTACAA

O_multiple_oligo9

S477N, T478K, E484A

ACCAGGCTGGCAACAAGCCATGTAATGGAGTGGCCGGCTTCAACTGT

O_multiple_oligo10

Q493R, G496S, Q498R,

TACTTTCCACTCAGATCCTATAGCTTCAGACCAACCTACGGAGTGGGCCACCAACCATACAGG

N501Y, Y505H GTGGTGGTGCTGTCCTTTGA
O_multiple_oligo11  [T547K GGACTGAAGGGCACAGGAG
O_multiple_oligo12  |D614G CTCTACCAGGGCGTGAACTGTAC
O_multiple_oligo13  H655Y TTGGAGCAGAGTACGTGAACAACTC
O_multiple_oligo14  N679K, P681H CAGACCAAGAGCCACAGGAGGGCAAGG
O_multiple_oligo15  N764K CCAACTTAAGAGGGCTCTGACAG
O_multiple_oligo16  |D796Y CCTCCAATCAAGTACTTTGGAGGCTTC
O_multiple_oligo17  [N856K CAGAAGTTCAAGGGACTGACAGTGCTG
O_multiple_oligo18 = |Q954H GTGGTGAACCACAATGCCCAGGCTC
O_multiple_oligo19 ~ N969K AACTTTCCAGCAAGTTTGGAGCCATCTCCTC
O_multiple_oligo20 _ [981F AATGACATCTTCAGCAGACTGGACAAGGTGGAGGCTGAGGTCCAGATTG
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

|Z| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|Z| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  SoftMax Pro 7.0.2 (Molecular Devices, LLC) was used to measure luminescence in the pseudovirus neutralization assays.

Data analysis GraphPad Prism (version 9.2) was used for data visualization and for statistical tests. Cutadapt (version 2.1) was used for processing of raw
reads from next-generation sequencing. Bowtie2 (version 2.3.4) was used for alignment of reads to sequences. PISA was used for identifying
antibody-spike interface residues. Antibody footprints were optimized by ImageMagick 7.0.10-31. PyMOL (version 2.3.2) was used for RBD
mutagenesis analysis and for visualization.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Materials used in this study will be made available under an appropriate Materials Transfer Agreement. All the data are provided in the paper. The structures used
for analysis in this study are available from PDB under IDs 6ZGE, 7L5B, 6XDG, 7L2E, 7RW2, 7C01, 7KMG, 7CDI, 7KS9, 7LD1, 7RAL, 7LSS, and 6WPT.
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Sample size We used similar sample sizes as in previous work (e.g. Wang et al 2021, Nature), which we had previously determined to be sufficient sample
sizes for comparisons between groups for these experiments.

i}
Q
g
(e
=
D
O
s]
=
g
=
_
)
o
(@]
E,._
)
(@]
wm
(e
3
3
Q)
=
S

Data exclusions  No data were excluded.

Replication The key results, the resistance of R346K, S371L, B.1.1.529, and B.1.1.529+R346K to monoclonal antibodies in pseudoviruses, and serum
neutralization of authentic viruses, were repeated twice independently in technical triplicate with similar results. The results that are shown
are representative. Other experiments were conducted in technical triplicate and not repeated.

Randomization  As thisis an observational study, randomization is not relevant.

Blinding As this is an observational study, investigators were not blinded.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
g Antibodies g I:I ChIP-seq
[X| Eukaryotic cell lines XI|[] Flow cytometry
D Palaeontology and archaeology IZ D MRI-based neuroimaging

I:I Animals and other organisms
IZ Human research participants
I:I Clinical data

D Dual use research of concern

XXOXXOO s

Antibodies

Antibodies used All of the antibodies used in this study were produced in our laboratory or received from other laboratories. 1-20, 2-15, S309, 2-7,
ADG-2, DH1047, 10-40, S2X259, 4-18, and 5-7 were expressed and purified in-house as described previously in Liu et al 2020, Nature.
REGN10987, REGN10933, COV2-2196, and COV2-2130 were provided by Regeneron Pharmaceuticals, Brii-196 and Brii-198 were
provided by Brii Biosciences, CB6 was provided by Baoshan Zhang and Peter Kwong (NIH), and 910-30 was provided by Brandon
DeKosky (MIT).

Validation All of the antibodies have been validated in previous studies both by binding to SARS-CoV-2 spike and neutralization of SARS-CoV-2
(both pseudovirus and authentic virus), and when applicable, have been confirmed to give similar results as that described in
publications by other groups. Specifically, 1-20 and 4-18 were tested in Liu et al 2020, Nature, CB6, Brii-196, 910-30, REGN10933,
COV2-2196, LY-CoV555, 2-15, REGN10987, COV2-2130, S309, 2-7, Brii-198, and 5-7 were tested in Wang et al 2021, Nature, and
ADG-2, DH1047, 10-40, and S2X259 were tested in Liu et al 2021, bioRxiv.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) Expi293 cells were obtained from Thermo Fisher (Catalog #A14527), Vero E6 cells were obtained from ATCC (Catalog#
CRL-1586), HEK293T cells were obtained from ATCC (Catalog# CRL-3216), and Vero-E6-TMPRSS2 cells were obtained from
JCRB (Catalog# JCRB1819).

Authentication Cell lines were purchased from authenticated vendors, and morphology was also confirmed visually prior to use.




Mycoplasma contamination Cell lines tested mycoplasma negative.

Commonly misidentified lines  No commonly misidentified cell lines were used in this study.
(See ICLAC register)

Human research participants

Policy information about studies involving human research participants

Population characteristics Population characteristics are described in detail for each individual in Extended Data Table 1 and 2. Convalescent samples
had the following ranges: 9-120 days post-symptoms, 45-79 years old, 4/10 female, 6/10 male. We presume all of these
individuals were infected with the wild-type strain of SARS-CoV-2 as these samples were collected in Spring of 2020. Vaccinee
samples had the following ranges: 6-213 days post-vaccination, 26-78 years old, 12/54 two mRNA-1273 vaccinations, 13/54
two BNT162b2 vaccinations, 9/54 Ad26.COV2.S vaccination, 5/54 two ChAdOx1 nCoV-19 vaccinations, 2/54 three
mRNA-1273 vaccinations, 13/54 three BNT162b2 vaccinations, 4/54 previously infected, 8/54 unknown previous infection
status, 42/54 uninfected, 31/54 female, 23/54 male.
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Recruitment For convalescent sera, convalescing patients volunteered and were enrolled in an observational cohort study at Columbia
University Irving Medical Center in Spring of 2020. For the BNT162b2 and mRNA-1273 vaccinee sera, individuals volunteered
and were enrolled in an observational cohort study at Columbia University Irving Medical Center to study the immunological
responses to SARS-CoV-2 in individuals who had received COVID-19 vaccines. Ad26.COV2.S and ChAdOx1 nCoV-19 vaccinee
serum samples were received from BEI Resources. Self-selection biases may have affected the demographics of the enrolled
population, but are not expected to have impacted the results of this study. High titer samples were specifically chosen
within each of the serum groups so that fold-change in titer could be better determined, as also discussed in the manuscript.

Ethics oversight All collections were conducted under protocols reviewed and approved by the Institutional Review Board of Columbia
University. All participants provided written informed consent.

Note that full information on the approval of the study protocol must also be provided in the manuscript.




