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Microbial communities are a key part to tackling global

challenges in human health, environmental conservation, and

sustainable agriculture in the coming decade. Recent

advances in synthetic biology to study and modify microbial

communities have led to important insights into their

physiology and ecology. Understanding how targeted changes

to microbial communities result in reproducible alterations of

the community’s intrinsic fluctuations and function is important

for mechanistic reconstruction of microbiomes. Studies of

synthetic microbial consortia and comparative analysis of

communities in normal and disrupted states have revealed

ecological principles that can be leveraged to engineer

communities towards desired functions. Tools enabling

temporal modulation and sensing of the community dynamics

offer precise spatiotemporal control of functions, help to

dissect microbial interaction networks, and improve

predictions of population temporal dynamics. Here we discuss

recent advances to manipulate microbiome dynamics through

control of specific strain engraftment and abundance,

modulation of cell-cell signaling for tuning population

dynamics, infiltration of new functions in the existing

community with in situ engineering, and in silico modeling of

microbial consortia to predict community function and ecology.
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Introduction
Microbial communities are complex and dynamic ecosys-

tems that play a crucial role in a variety of important

ecologies from soil to marine and host-associated
www.sciencedirect.com 
environments. The physiology and ecology in microbial

communities are dependent on the spatial organization

and temporal dynamics of their members. Spatial struc-

turing can promote microbial interactions, enabling met-

abolic co-dependencies that strengthen community

robustness, resiliency and homeostasis [1]. Microbial

communities undergo temporal dynamics where fluctua-

tions in community composition, metabolism, and func-

tion can lead to community trajectories that manifest

complex phenotypes [2,3,4��]. Dissecting the governing

spatiotemporal principles within a microbiome is funda-

mental to our understanding of its physiology and

ecology.

Temporal dynamics in microbial communities reflect

constant fluctuations and recurrent variations in the com-

munity structure, composition or function, and are gov-

erned by both intrinsic and extrinsic factors [4��]. Intrinsic

factors include the metabolism and colonization potential

of individual species as well as intra-species and inter-

species interactions, while extrinsic factors are associated

with periodic changes in environmental conditions such

as pH and nutritional availability. Intrinsic factors can

potentially be engineered through modulation of com-

munity composition or genetic alterations of specific

member species. For example, a microbiota can be engi-

neered with metabolic capacities to modulate the fitness

of other community members. Extrinsic factors can be

more easily tuned in a time-dependent manner by intro-

ducing growth-promoting or inhibiting metabolites or

changing the biochemistry of the environment. For

instance, antibiotic exposure or nutritional changes can

result in alterations to the composition and temporal

dynamics of microbiomes in soil and the gut [5,6].

Controlling temporal dynamics through alteration of

intrinsic and extrinsic factors can therefore serve as an

important route to engineer microbial communities for a

variety of applications (Figure 1a) [4��]. For example,

changing temporal dynamics of communities that have

detrimental effects on the host during dysbiosis can

rescue healthy homeostasis. For instance, in patients with

irritable bowel disease, shifts in temporal dynamics could

prevent increased abundance (or presence) of pro-colito-

genic strains and thus avoid inflammation flare-ups [7].

On the other hand, engineering temporal population

dynamics in the soil community could directly affect

plants’ growth, health state, and life cycle. For example,

modulating the abundance of nitrogen-fixing bacteria or

bacteria that regulate the phytohormones balance can
Current Opinion in Microbiology 2022, 65:47–55
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Figure 1

Engineering Temporal Dynamics
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Schematic of the fundamental principle of spatiotemporal community dynamics.
lead to significant physiological changes in the plant

growth and life cycle [8].

Engineering permanent changes in the community and/

or its members can shift the intrinsic community fluctua-

tions, thus resulting in long-lasting alterations of temporal

dynamics. Through advances in synthetic biology, micro-

bial communities can now be engineered to carry out a

variety of novel functions such as sensing dynamic signals

and actuating tailored responses. The ability to modulate

and sense the community’s intrinsic fluctuations enables

transient modifications in the community function and
Current Opinion in Microbiology 2022, 65:47–55 
dynamics that can help to elucidate the fundamental

principles that govern the overall temporal dynamics.

In this article, we discuss emerging approaches to ratio-

nally engineer temporal modulations and sensing in

microbial communities. We focus on new emerging tools

including rewiring signal transduction systems, modulat-

ing biophysical characteristics, engineering metabolism

and cell-cell interactions, and quantitative modeling of

community dynamics (Figure 1b). We highlight mostly

work involving temporal dynamic modulation in the

human microbiome as an example community. Temporal

modulation and sensing of intrinsic factors are a subset of
www.sciencedirect.com
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perturbations that can affect the overall temporal dynam-

ics in microbial communities. Using synthetic biology to

modify these factors will enable a more accurate predic-

tion and specific long-lasting intervention of the commu-

nity temporal dynamics. Furthermore, temporal modula-

tions and sensing offer a deeper understanding of the

environmental context that other forms of engineering

temporal dynamics can leverage to alter extrinsic factors.

Because of space constraints, we refer the reader to other

excellent reviews focused on systems and computational

biology aspects of the topic [9,10].

Molecular signaling mediated temporal
dynamics
Bacteria utilize a variety of mechanisms to sense the

environment and modulate population dynamics in

response to specific stimuli. Quorum sensing (QS) is

one strategy to gain precise spatiotemporal control in

an environment and regulate cell functions through coor-

dinate gene expression at a population level (Figure 2a).

Quorum sensing signaling relies on small molecule indu-

cers such as acyl-homoserine lactones (AHLs) or auto-

inducers (AIs) that regulate genetic outputs. QS systems

have been repurposed in many ways, such as for con-

trolled release of a therapeutic in a population density-

dependent manner or for coordinating the geography of

cells into specific spatial patterns [11–13]. In order to

increase the tunability of QS, inducible QS (iQS) can be

used to couple a gene of interest with QS and allow

external control of gene expression outputs [14]. For

instance, a lysis gene can be developed with iQS for

temporal and spatial control of population death and

release of a protein cargo [15]. These approaches can

be extended with well-characterized and orthogonal QS

systems with minimal cross-talk to enable control of

multiple strains in a community [14]. To maintain the

stability of synthetic QS genetic circuits over time, a

strategy that leverages ecological interactions and cyclical

population control has been devised using strains that

could kill or be killed by one another [16��]. This

approach provides a way to control synthetic ecosystems

and maintain gene circuits without the use of antibiotic

selection [16��]. In addition, more complex genetic cir-

cuits using CRISPRi or other inducers [17] can be used to

expand the communication capacity towards engineering

more sophisticated temporal community dynamics such

as programmed cellular differentiation, multicellular pat-

tern formation, and the coordination of multiple meta-

bolic pathways between strains in a community.

Two-component systems (TCSs), a large family of bac-

terial signal transduction pathways [18], can also be

leveraged to rewire and record population dynamics

[19��]. By swapping TCS components from different

bacterial species, it is possible to create new sensing

modules that can coordinate novel signal transduction

pathways to environmental stimuli such as pH, nitrate
www.sciencedirect.com 
and different metabolites [19��]. For example, a biosensor

to detect inflammation in the mammalian gut was devel-

oped by linking thiosulfate sensor (ThsSR) and tetra-

thionate sensor (TtrSR) with a reporter gene (Figure 2b)

[20,21]. We and others have utilized these natural and

engineered biosensor systems to record information about

temporally fluctuating signals in the population, using

DNA-based cellular recorders [26]. To record environ-

mental signals, these systems either leveraged natural

CRISPR adaptation based on Cas1-Cas2 spacer acquisi-

tion (Figure 2c) [22,23] or used Cas9 endonuclease pro-

prieties to deplete DNA molecules in a sequence-specific

manner [24]. Biosensor outputs can trigger a DNA-

recording module to chronicle oscillatory states in the

population. Furthermore, TCSs can be interfaced with

synthetic gene circuits for more complex tuning of signal

transformation or to add more sophisticated functionality,

such as signal integration and computation [25]

Biophysical mechanisms for controlling
population dynamics
Cells exist in complex environments with diverse sets of

biochemical and biophysical factors that can be exploited

for population engineering. Control of localization and

retention of microbiota in a complex environment, such as

the gastrointestinal (GI) tract with spatiotemporally

dynamic and heterogeneous niches, requires genetic cir-

cuits that can detect and respond to a myriad of chemical

and environmental gradients [26]. Numerous approaches

have been developed for engineering populations by

leveraging these environmental gradients. Recent

advances in the use of non-biochemical stimuli such as

light, heat or electricity could drastically expand the

cellular capacity to temporally regulate functions in an

environment. TCS have been engineered to create light-

responsive optogenetic systems [27,28] that link a light

stimulus to the activation of metabolic functions or

expression of synthetic genetic circuits to precisely

deliver a target metabolite. For example, a green light-

activated, red light de-activated two-component system

CcaSR has been used to spatially and temporally induce a

gut bacterium to produce colanic acid, which increased

longevity in a C. elegans model of aging (Figure 3a) [29].

Gene regulation using temperature offers several advan-

tages over chemicals or light because temperature

changes can be applied to biological samples globally

by heat or electromagnetic radiation. Exquisite spatial

and temporal patterns with penetrating depth can be

generated with heat using techniques such as focused

ultrasound. For instance, TlpA, a temperature-sensitive

transcriptional repressor from Salmonella typhimurium, was

engineered into a modular protein–protein dimerization

system to transduce heat inputs into regulated gene

expression (Figure 3b) [30]. This platform could be safely

translated clinically because high-intensity focused ultra-

sound is a non-invasive, FDA-approved therapeutic pro-

cedure that can be used to regulate blood and lymph flow
Current Opinion in Microbiology 2022, 65:47–55
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Figure 2
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Molecular signal-mediated temporal dynamics. (a) Quorum sensing (QS) harnessed to gain precise population spatiotemporal control and regulate

cell functions through coordinated gene expression at the population level. (b) Two-component signal transduction pathways leveraged to rewire

and record population dynamics. The thiosulfate (ThsSR) and tetrathionate (TtrSR) TCS combined with a reporter gene have been used as

biosensor to detect inflammation in the mammalian gut. (c) CRISPR systems engineered to record information about temporally fluctuating signals

in the population. The natural CRISPR adaptation based on spacer acquisition (Cas1-Cas2) has been used to record environmental signals.
and to treat cancers by ablating localized tumors. Beyond

heat, electrical signals have also been used to modulate

community dynamics. Redox responsive genetic circuits

using the SoxRS regulon have been engineered to con-

trol gene expression using external electronic inputs

[31]. In combination with QS systems, population-level

bioelectronic circuits have been developed to relay

electrical signals between cells to form engineered

microbial communication networks (Figure 3c) [32�].
Redox imbalance is often associated with gut dysbiosis

[33,34] thus, these systems could be customized to

monitor the redox state within the gut microbiome

and produce antioxidant metabolites able to rescue

homeostasis in response.

Other non-biochemical stimuli including magnetism and

acoustics have also emerged as potential modulators of

population dynamics. Magnetically responsive genetic
Current Opinion in Microbiology 2022, 65:47–55 
systems have been demonstrated where bacteria are

engineered to produce iron-rich bodies by overexpressing

iron-storage ferritins or iron-binding proteins inside their

cytoplasm (Figure 3d) [35]. A magnetic field or a ferro-

magnetic matrix (i.e. ferromagnetic beads) can then be

used to capture these magnetically tagged cells [35] for

precise control of their localization in an environment.

Another orthogonal system that leverages the generation

of gas vesicles in bacteria enable both acoustic reporting

and monitor of cellular function across a population with

high temporal and spatial resolution using focused ultra-

sound [36]. The co-expression of structural gvpA genes

from Aphanizomenon flos-aquae with the accessory genes

gvpR–gvpU from Bacillus megaterium enables the produc-

tion of intracellular gas vesicles in bacteria and mamma-

lian cells to allow the non-invasive imaging of acoustic

reporter cells inside an animal (Figure 3e) [36]. These and

future non-biochemical modulation modalities are poised
www.sciencedirect.com
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Figure 3
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Biophysical mechanisms for controlling population dynamics (a) Light inducible system that activate metabolic pathways in vivo. Colanic acid was

used to increase longevity in C. elegans. (b) Temperature-dependent dimerization of the TlpA repressor from S. typhimurium used to modulate

gene expression. (c) Redox responsive genetic circuits using the SoxRS regulon engineered to control gene expression using external electronic

inputs in combination with QS for population-level bioelectronic control. (d) Magnetic responsive system employed for spatial localization of

strains. (e) Acoustic signals used for both high temporal and spatial resolution of strains.
to have a significant impact on spatiotemporal control of

community dynamics.

Cell–cell mediated strategies to engineer
temporal dynamics
Numerous inter-microbial interactions mediated by

direct cellular contact can result in population-level

dynamics. Horizontal gene transfer (HGT) is an evolu-

tionary strategy by which cells can alter their fitness

through acquisition of new genetic material (i.e. antibi-

otic resistance or metabolic genes) in a changing envi-

ronment. Transduction, conjugation and natural trans-

formation are main routes to mediate microbial exchange

of genetic material and have been engineered to provide

community-wide control. Phage therapy relies on the life

cycle of bacteriophages and their stringent host tropism

to target-specific members of a microbiome. This

approach can be used to selectively eliminate target

strains or transfer-specific genes into defined species

[37–39]. The narrow and specific tropism of phages

makes this platform very appealing for its safety, but

it reduces the power of this technology for broader

applications. Different CRISPR systems can be loaded

into a phage to allow programmable and sequence-spe-

cific modification of the host DNA and RNA to elicit cell

death. For instance, Cas9/Cas3 has been used as a
www.sciencedirect.com 
warhead in phages to target virulence genes in pathogens

for selective killing (Figure 3a) [40,41] and Cas13a has

been used to degrade host mRNA and kill the host via

‘collateral’ RNase activity (Figure 3a) [42]. Endogenous

Cas systems in target cells can also be leveraged to

trigger cell death by delivering self-targeting crRNAs

[43]. Community-wide modulation using phage therapy

remains an open challenge in many applications since

phages exhibit a very narrow host range and are difficult

to reengineer [44]. CRISPR technology used in bacteria

offers multiple levels of safety. Indeed, these systems (i)

rely on sequence specificity, (ii) need to be delivered or

endogenously re-purposed into the recipient cells, (iii)

elicit cell death, thus eliminating any unwanted propa-

gation of the systems within the community.

Bacterial conjugation is a widespread mechanism by

which cells share DNA with one another through a

contact-dependent manner over large phylogenetic dis-

tances [45]. Thus, conjugation is a highly flexible delivery

platform for community-scale modulations. For example,

a conjugation-based microbiome engineering approach,

MAGIC, that uses modular mobile vectors was used to

deliver genetic payloads to diverse members of the mam-

malian gut microbiome [46]. This system achieved high

efficiency gene transfer in diverse bacterial species
Current Opinion in Microbiology 2022, 65:47–55
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Figure 4
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Engineering cell–cell communication. (a) Horizontal gene transfer paired with CRISPR technologies to genetically engineer microbial communities

at sequence level resolution. CRISPR systems in engineering microbiome have been mostly used for sequence-specific strain depletion. (b)
Molecular antagonism provides a platform to modulate strain depletion in complex communities. (c) Niche partitioning leverages principles of

microbial ecology by altering the metabolic interactions and introduces substrate exclusivity to enable temporal control of strain-specific growth.
spanning multiple phyla, while minimally impacting the

native microbiome. To improve host targeting, strategies

leveraging genome targeting enzymes such as integrative

and conjugative elements (ICE) [47] and programmable

CRISPR-Cas based transposases have been developed to

allow payload introduction at a nucleotide-level resolu-

tion in a specific recipient within a complex community

(Figure 4a) [48]. These powerful technologies allow

alterations of metabolism and functional selection of

species within the population that can offer spatial and

temporal control at an unprecedented capacity. Systems

for biocontainment and cargo stability such as sequence

entanglement of the cargo gene with a toxin or an essen-

tial gene [49] and environmental dependency of the

synthetic cargo stability can be employed to control the

dissemination and the persistence of the engineered

function.
Current Opinion in Microbiology 2022, 65:47–55 
Various types of diffusible microbial inhibitors such as

soluble small molecules, peptides, and proteins have

evolved during the evolution of microbial warfare [50].

As such, these antagonistic systems can be repurposed to

modulate community dynamics. Broad-spectrum inhibi-

tors such as bacteriocins and microcins are effective

against numerous gram-negative Enterobacteria patho-

gens by disrupting essential cellular machineries [50].

More narrow inhibitors include the type VI secretion

system (T6SS), which is a contact-dependent, mem-

brane-associated apparatus used by gram-negative bacte-

ria to inject target-specific ‘effector’ toxins into adjacent

foreign cells [51]. Effector proteins determine the speci-

ficity of T6SS antagonism and can be reprogrammed for

defined bacterial targeting (Figure 4b) [52]. These sys-

tems can be harnessed to manipulate and modulate taxa

presence and extinction within the microbial community
www.sciencedirect.com
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to enable temporal and spatial control of interspecies

dependencies.

Modeling and engineering metabolism for
analysis of population dynamics
Quantitative metabolic modeling of the microbiome can

help to identify the core and accessory biochemical path-

ways that could be tuned, added, or removed to control

community dynamics [53,54]. However, genome-scale

modeling is limited by the quality of the functional gene

annotations. As such, bottom-up approaches to build and

characterize synthetic microcosms offer the opportunity

to deconvolute complex community interactions. Syn-

thetic microbial consortia from the human gut [55] and

soil [56] have shown that dynamic models based on

pairwise interactions could predict community assembly.

These efforts can yield deeper insights into the impact of

various environmental factors such as pH [57], nutrient

availability [58], toxins [59], and temperature [60] on

community dynamics. For example, in silico multi-level

trophic models of the human gut microbiome led to

mechanistic links between microbial abundances and

specific metabolites [61]. This model aimed to approxi-

mate the metabolic flow through the intricate cross-feed-

ing network of microbes in the human lower intestine and

allowed the authors to simultaneously capture the meta-

bolic activities of hundreds of species consuming and

producing hundreds of metabolites contributing to the

ever-changing ecosystem. This advancement enabled the

prediction of the metabolic environment and the associ-

ated microbial abundances based on their metabolic

capacities,

Combining experimental characterizations with mathe-

matical modeling can help to dissect metabolite changes

by individual species in a community [62]. However,

models that can predict both community dynamics and

functional outputs require integration of quantitative

datasets from experimental measurements of micro-

biomes and interaction networks. Such a data-driven

approach has been taken to model butyrate production

by human gut communities in vitro [63]. Heuristic meta-

bolic modeling approaches have also been used to predict

cross-feeding interactions and dynamic population

changes [64�]. Other experimental platforms using micro-

fluidic systems can further improve the throughput of

data generation and investigation of spatially structured

environments [65�]. Such systems offer exquisite spatio-

temporal control of various experimental parameters and

enable systematic quantification of community proper-

ties, such as diffusion-mediated processes in governing

interspecies interactions.

From an engineering perspective, altering metabolic

interactions or resistances to environmental metabolites

are useful strategies to modulate population growth. For

instance, polysaccharide utilization enzymes can enhance
www.sciencedirect.com 
microbial colonization in the GI tract [66] and bile salt

hydrolases can mediate resistance to otherwise toxic

primary bile acids in the chemical milieu of the gut

[67]. Modifying a strain to have access to an exclusive

metabolic niche enables precise temporal control over its

engraftment capacity and abundance in the gut. Admin-

istration of the unique substrate that can be exclusively

accessed by the engineered strain can shape the micro-

biota membership (Figure 4c) [68�,69]. For example, a

Bacteroides species was engineered with a rare gene

cluster for porphyran utilization that enabled nutrient-

driven temporal control of its abundance in the mouse gut

through varying the amount of porphyran available to the

animal [68�,69]. Thus, these approaches can be used to

control and modulate site-specific engraftment and spa-

tiotemporal abundance of natural probiotics and live

bacterial therapeutics.

Conclusions and future prospects
A multidisciplinary approach combining synthetic and

systems biology to study microbial community dynamics

will offer new possibilities to engineer natural and defined

microbiota. These advances are poised to propel engi-

neered microbiomes into innovative applications for

many different sectors. Outstanding challenges remain

in these areas including 1) better methods to collect

temporal datasets at higher resolution, 2) obtaining mean-

ingful spatial biogeography information across a popula-

tion, and 3) assessing transcriptional and metabolic

changes at a species resolution across the entire commu-

nity. Improved annotations of microbial genomes and

higher accuracy and more efficient genomic tools and

gene delivery technologies could transform our capacity

to tune microbiomes at an unprecedented resolution in

space and time.
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Löffler FE, O’Malley MA, Garcı́a Martı́n H, Pfleger BF, Raskin L,
Venturelli OS et al.: Common principles and best practices for
engineering microbiomes. Nat Rev Microbiol 2019, 17:725-741.

10. Leggieri PA, Liu Y, Hayes M, Connors B, Seppälä S, O’Malley MA,
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