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ABSTRACT Bacterially secreted proteins play an important role in microbial physiol-
ogy and ecology in many environments, including the mammalian gut. While gut
microbes have been extensively studied over the past decades, little is known about
the proteins that they secrete into the gastrointestinal tract. In this study, we devel-
oped and applied a computational pipeline to a comprehensive catalog of human-
associated metagenome-assembled genomes in order to predict and analyze the
bacterial metasecretome of the human gut, i.e., the collection of proteins secreted
out of the cytoplasm by human gut bacteria. We identified the presence of large
and diverse families of secreted carbohydrate-active enzymes and assessed their
phylogenetic distributions across different taxonomic groups, which revealed an
enrichment in Bacteroidetes and Verrucomicrobia. By mapping secreted proteins to
available metagenomic data from endoscopic sampling of the human gastrointesti-
nal tract, we specifically pinpointed regions in the upper and lower intestinal tract
along the lumen and mucosa where specific glycosidases are secreted by resident
microbes. The metasecretome analyzed in this study constitutes the most compre-
hensive list of secreted proteins produced by human gut bacteria reported to date
and serves as a useful resource for the microbiome research community.

IMPORTANCE Bacterially secreted proteins are necessary for the proper functioning
of bacterial cells and communities. Secreted proteins provide bacterial cells with the
ability to harvest resources from the exterior, import these resources into the cell,
and signal to other bacteria. In the human gut microbiome, these actions impact
host health and allow the maintenance of a healthy gut bacterial community. We
utilized computational tools to identify the major components of human gut bacteri-
ally secreted proteins and determined their spatial distribution in the gastrointestinal
tract. Our analysis of human gut bacterial secreted proteins will allow a better under-
standing of the impact of gut bacteria on human health and represents a step to-
ward identifying new protein functions with interesting applications in biomedicine
and industry.
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The gut microbiome plays a vital role in human metabolism, and its deviation from
homeostasis has increasingly been linked to various diseases (1–3). Our under-

standing of the healthy equilibrium state of the gut microbiome is complicated by the
fact that closely related taxa possess vastly different, often understudied, metabolic
abilities (4). In particular, gut microbes harbor huge metabolic capacities for biotrans-
formation and degradation of dietary substrates that are otherwise indigestible by the
host (5). For instance, bacterial carbohydrate-active enzymes (CAZymes) that process
complex dietary and host-derived polysaccharides are abundantly found in the gut
microbiome (3, 6, 7). CAZymes not only help convert and release various sugars into
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absorbable forms for the host, but they also facilitate interspecies cross-feeding (8).
Since gut microbes are heterogeneously distributed along the gastrointestinal (GI)
tract, their associated metabolic capacities can impact dietary metabolism from the
proximal to the distal regions (9). Unfortunately, the biodistributions of bacterial meta-
bolic enzymes across the GI tract and between the luminal and mucosal areas have
not been adequately described to date. A deeper understanding of the spatial geogra-
phy of microbial metabolism can help elucidate key gut metabolic biotransformation
processes with relevance for nutrition and human health.

At a cellular resolution, microbially associated metabolism in the gut occurs either
in the intracellular compartments of individual bacteria or in the extracellular milieu
along the lumen or mucosal interfaces through bacterial secretion of digestive
enzymes and proteins. Bacterial secretion mainly takes place through the general se-
cretory (Sec) pathway, which relies on recognition of a N-terminal signal peptide tag
on a target protein for active transport across a SecYEG channel (10) out of the cyto-
plasm. These Sec-exported proteins remain in the periplasmic space, are embedded
into the inner or outer membranes, or are completely secreted extracellularly. Gram-
negative gut microbes such as Bacteroidetes often contain many glycoside hydrolases
and polysaccharide lyases, with some genomes encoding hundreds of such CAZymes
(5). These CAZymes can often contain secretion-associated peptide sequences (5),
which suggests that they may function in the extracellular compartment with commu-
nity-wide effects (11, 12). Delineating the microbiome secretome can help elucidate
the main modulators of bacterial community structure in the gut.

Past studies of protein secretion relied heavily on low-throughput experimental strat-
egies that required expression, purification, and mass spectrometry analysis of the secreted
proteins individually (13). More recently, advances in machine learning and protein struc-
ture predictions have led to in silico predictions of secreted proteins, and this method has
been applied on large swaths of genomic data in bacteria from a variety of different envi-
ronments (12, 14). One study revealed that host-associated bacteria encoded more extracel-
lular proteins than bacteria from other environments (12). However, that study used
inferred protein annotations from mapping 16S rRNA amplification data sets to reference
genomes, which is an approach that can be limited when trying to annotate protein reper-
toires that are less conserved. The recent increase in metagenomic data sets and new as-
sembly and binning pipeline improvements have created a wealth of metagenomically
assembled genomes (MAGs) that have increased the number and diversity of available bac-
terial genomes (4, 15, 16). These advances can help better dissect the gut microbial secre-
tome but have not been implemented to date.

Here, we describe a systematic analysis of the human gut secretome using a combi-
nation of in silico approaches to predict secreted proteins from MAGs and map their
spatial distribution along the gastrointestinal tract. We annotated the function of
secreted proteins and cataloged their enrichment in specific bacterial taxa in the gut.
Analysis of the biogeography of secreted enzymes revealed interesting patterns of dis-
tributions that suggested functional specialization in different GI compartments, espe-
cially those belonging to CAZymes. This work represents the first large-scale systematic
study of secreted proteins in bacterial MAGs associated with the human gut and pro-
vides a foundation to facilitate future efforts in gut microbiome manipulation and
engineering.

RESULTS
Establishing a comprehensive gut bacterial secretome. We aimed to generate a

comprehensive database of secreted proteins (i.e., the secretome) from the human gut
microbiota (Fig. 1a) to elucidate their role in intermicrobial and host interactions and
explore their functional significance in human physiology and metabolism. We first
amassed and annotated 24,323 publicly available high-quality human gut MAGS (15)
using Prodigal v2.6.3 (17) (see Materials and Methods), which resulted in 54 million
open reading frames (ORFs) that were then clustered at 95% amino acid identity using
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USEARCH (18) into 1.40 million ORF clusters, each with at least 5 ORF sequences. We
utilized a strategy of clustering sequences at a high sequence identity and annotating
only representative centroid sequences to reduce the computational resources neces-
sary to analyze the large HGM data set. Thus, the representative centroid sequence of
each ORF cluster derived from USEARCH was then annotated using SignalP 5.0 (19) to

FIG 1 Human gut metasecretome prediction. (a) Illustration of human gut metasecretome prediction pipeline. Centroid sequences are denoted by
asterisks. (b) Protein lengths of secreted and nonsecreted proteins. (c) Percentages of secreted ORFs by phylum in HGM MAGs. The numbers of MAGs in
each phylum are shown above each violin plot.
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identify possible presence of signal peptides. Since we are interested only in extracellu-
larly secreted proteins, we filtered out sequences with lipoprotein signal peptides (a
SignalP output) because they are likely to be embedded in the membrane (20), and we
only maintained those with Sec1 and Tat pathway signal peptides (21). We further
used TMHMM v2.0 (22) to identify and exclude sequences with transmembrane
domains. A total of 37,511 representative centroid sequences were collated to yield a
set of representative secretome ORFs that contained signal peptides but no transmem-
brane domains or lipoprotein signal peptides. Secretome designation of members
within ORF clusters was assigned based on the representative secretome ORFs, which
resulted in 1,627,958 ORFs that are putatively secreted out of the cytoplasm, which we
designated the “gut bacterial secretome.”

Since the gut is a highly competitive environment, there are likely important evolu-
tionary drivers for optimization of secreted proteins. Secreted proteins are generally
encoded with amino acids that are less expensive to produce (23), suggesting that there
is a balance between the beneficial and altruistic functions of secreted proteins and their
fitness burden on the producing bacteria. We therefore first explored whether there was
a correlation between secretion status and protein size. Interestingly, we found that the
gut-secreted proteins tend to be larger than nonsecreted proteins from gut bacteria
(482 versus 329 amino acids on average, respectively; Mann-Whitney U-test P , 1023)
(Fig. 1b). This suggested that, at the global level, the benefits of the secreted protein out-
weigh any metabolic cost of production for the secreting bacteria. When we analyzed
the biosynthetic cost of secreted proteins, we observed that Bacteroidetes and verruco-
microbial MAGs tended to have similar biosynthesis costs per residue for secreted and
nonsecreted proteins, while other gut phyla had a lower median cost for secreted pro-
teins (Kruskal-Wallis H-test, P , 10256; Mann-Whitney U test with Bonferroni correction,
P, 1024) (see Fig. S1 in the supplemental material).

Bacteroidetes strains, as well as some Verrucomicrobia, have been predicted to secrete
a large proportion of their proteome (12, 24, 25). To examine the contribution of each
phylum to the gut metasecretome, we compared the number of encoded proteins with
signal peptides in each of the most prominent and diverse phyla in the human gut,
selecting phyla that had at least 5 MAGs in the data set (Fig. 1c). Bacteroidetes and
Verrucomicrobia tended to secrete a larger percentage of their proteome compared to
other major gut phyla (Kruskal-Wallis H-test, P , 1023; Mann-Whitney U test with
Bonferroni correction, P , 1023), with Bacteroidetes the top secreting phylum in the gut
(Mann-Whitney U test with Bonferroni correction, P , 1023). Taken together, these
results suggest that Bacteroidetes and Verrucomicrobia invest significantly in their
secreted proteome and are key players in the final composition of the gut bacterial
metasecretome.

Functional assessment of the gut bacterial secretome. To survey the functions of
the secretome, we used the eggNOG protein ortholog database (26) to annotate secreted
ORFs from clusters of proteins with more than 5 member sequences (Table S1). We only
annotated one MAG per strain-level operational taxonomic unit (OTU) in the Human Gut
Metagenomes (HGM) data set (15), so as to reduce redundancy and limit the computa-
tional resources required to do this task. The number of ORFs secreted per MAG was aver-
aged over all representative MAGs in each phylum. The main COG categories among
predicted secreted proteins in the gut microbiome were the following: (i) cell wall struc-
ture and biogenesis and outer membrane, (ii) carbohydrate metabolism and transport,
(iii) inorganic ion transport and metabolism, (iv) energy production and conversion, (v)
amino acid metabolism and transport, and (vi) secretion, motility, and chemotaxis
(Fig. 2a). Bacteroidetes and Verrucomicrobia encoded the highest average number of
secreted proteins per MAG in the carbohydrate metabolism and transport category. Top
Enzyme Commission (EC) categories in the gut metasecretome included proteinases
involved in cell membrane biogenesis, nucleotidases, and a variety of CAZymes, such as
galactosidases and glucosidases (Fig. 2b), which implied that the human gut metasecre-
tome is highly functionally diverse.
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To understand the differences in secreted protein functions within and across phyla,
we examined the average number of encoded secreted enzymes per MAG in each bac-
terial family represented in the HGM data set. EC annotations were used to identify the
distribution of hydrolases, isomerases, transferases, oxidoreductases, lyases, and ligases
in gut bacterial families (Fig. 2c). We found that secreted hydrolases were encoded
more commonly in the secretomes of Bacteroidetes, Verrucomicrobia, and certain
Proteobacteria families. Bacteroides strains are known to form complex cross-feeding
networks in the mammalian gut via secreted CAZymes (8), while Verrucomicrobia like

FIG 2 Main functions of the human gut metasecretome. (a) Average number of gut secreted ORFs in each COG category. (b) Top EC annotations of gut
secreted proteins. (c) Average numbers of secreted ORFs belonging to each EC category in each MAG, clustered by phylogeny (see Materials and Methods
for details).
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Akkermansia municiphila are known mucin degraders (27, 28). In line with these obser-
vations, Bacteroidetes and Verrucomicrobia MAGs in our study appeared to secrete
more hydrolases than other gut phyla. Conversely, Proteobacteria secreted more oxi-
doreductases than other gut phyla included in this study, which was interesting since
there are only a few known oxidoreductases that are extracellular in gut bacteria. One
such case is Cgr2, a reductase encoded by Eggerthella lenta gut strains, which has the
ability to metabolize and inactivate cardiac drug digoxin (29).

Since the gut microbiome contains a wealth of CAZymes and polysaccharide degra-
dation plays a role in determining ecological niches within the gut, we wanted to define
which gut bacterial CAZymes were likely to form part of the metasecretome. We used
HMMER to annotate 1,911,738 ORFs from representative HGM MAGs (see Materials and
Methods) with dbCAN CAZyme families, yielding 43,331 CAZyme annotations, 10.5% of
which were secreted (Table S2). The most common CAZyme EC functions in the gut
metasecretome included beta-N-acetylhexosaminidases, which are involved in degrada-
tion of chitin, intestinal mucosal glycans, and milk oligosaccharides (30–32), alpha-gluco-
sidases, which are involved in the degradation of starch (33), and beta-glucosidases,
which degrade cellulose (34, 35) (Fig. 3a). These results highlighted the complexity and
abundance of gut bacterial enzymes dedicated to degrading human dietary substrates
and host glycoproteins. When we compared the number of secreted CAZymes across
different phyla, we found that Bacteroidetes and Verrucomicrobia secreted a higher per-
centage of their CAZymes than other gut phyla (Kruskal-Wallis H-test, P , 1023; Mann-
Whitney U test with Bonferroni correction, P , 1023), in addition to encoding a large
number of CAZymes (Fig. S2). To compare secretion of CAZyme families in gut bacterial
MAGs, we performed principal-coordinates analysis (PCoA) (Fig. 3b). The principal coordi-
nates were computed based on a matrix of the number of ORFs in each MAG that were
annotated as part of a CAZyme family and whether these ORFs were annotated as
secreted or not. We found that HGM bacterial phyla tended to cluster together, implying
that a large part of the CAZyme repertoire is preserved at the phylum level in the human
gut microbiome. However, Verrucomicrobia and Bacteroidetes MAGs tended to cluster
closely together, suggesting that these MAGs have similar CAZyme repertoire features.
To investigate this further, we examined the CAZyme abundance and secretion of MAGs
in this Bacteroidetes-Verrucomicrobia (BV) cluster (Fig. S3). MAGs in the BV cluster tended
to both encode and secrete a larger number of CAZyme families than did MAGs outside
of this cluster. Many of the CAZymes unique to this cluster were predicted to be secreted
and have been previously known to act upon animal carbohydrates (GH2, GH20, GH29,
GH33, GH43, GH84, GH92, GH95, and GH109), plant cell wall carbohydrates (GH2, GH29,
GH31, GH51, GH95, and GH127), or starch or glycogen (GH13) (6, 36). While some of
these glycoside hydrolases have been previously reported in Akkermansia municiphila,
other less-well-studied HGM Verrucomicrobia included in this study have not been previ-
ously reported to encode these CAZyme families. For instance, we identified several
ORFs from Opitutales and UBA8416 MAGs as secretors of GH109 (data not shown), a
CAZyme family with reported mucin-degrading abilities (37). However, these putative
GH109 proteins had no close BLASTp matches and thus may represent novel degrada-
tive abilities in understudied members of the human gut Verrucomicrobia.

To understand the differences in secreted CAZyme repertoire in HGM bacterial fam-
ilies, we calculated the percentage of CAZymes secreted by each MAG in each CAZyme
family in the HGM (Fig. S4). Most CAZyme families in the HGM are glycoside hydrolases
and polysaccharide lyases, so we focused our analysis on these degradative enzymes.
MAGs from the same phylum tended to cluster together, with some proteobacterial
MAGs and some for Firmicutes as the exceptions. Verrucomicrobial MAGs tended to
cluster closely with Bacteroidetes, suggesting a shared repertoire of CAZymes and thus
similar glycan degradative capacities. Several glycoside hydrolases were more likely to
be secreted in Bacteroidetes MAGs than in other phyla, including plant cell wall hydro-
lases (GH2, GH3, GH5, GH29, GH31, GH36, GH43, GH51, and GH127), peptidoglycan hy-
drolases (GH23, GH25, and GH73), sucrose or fructan hydrolases (GH32), and animal
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carbohydrate hydrolases (GH2, GH3, and GH29). However, these GHs were still
encoded in the MAGs of most phyla in the data set, which suggested that they either
fulfill other functions inside of the cell, or are exported via another route than the Sec
pathway, or contain signal peptides that are not recognized by SignalP. GH1 and GH4
were two CAZymes that were encoded in most gut MAGs and not secreted, but they
were also conspicuously not found in Bacteroidetes MAGs, despite being found in most
other MAGs in the HGM, mainly Firmicutes. GH1 is a glycoside hydrolase family with

FIG 3 Carbohydrate degradation in the human gut metasecretome. (a) Most abundant secreted CAZyme families in the gut, colored by phylum. (b)
Principal-coordinates analysis of representative MAGs secreted and nonsecreted with CAZyme abundance.
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beta-galactosidase, beta-glucosidase, and mannosidase activities. Some Bacteroidetes
from nongut environments possess GH1, but thus far the only gut Bacteroidetes strain
reported to possess GH1 is a ruminal strain of Bacteroides (38). GH4 has been mostly
characterized in soil bacteria and participates in the degradation of raffinose, a plant-
derived polysaccharide (39, 40). One of the few glycoside hydrolases that was more fre-
quently secreted in Firmicutes than in Bacteroidetes was GH18, a CAZyme family that
includes chitinases (EC 3.2.1.14) and endo-b-N-acetylglucosaminidases (EC 3.2.1.96).
This may be indicative of a specific niche occupied by some Firmicutes strains in the
gut or an alternative export mechanism for GH18 enzymes in Bacteroidetes. Together,
our analysis of the human gut metasecretome demonstrated the diversity and abun-
dance of secreted enzymatic functions in the healthy human gut. We showed that gut
phyla encode vastly different CAZyme repertoires, with the exception of Bacteroidetes
and Verrucomicrobia, which suggests an overlap in secreted degradative abilities
among these two members of the gut microbiome. Finally, we identified novel puta-
tive glycosidase hydrolase families in verrucomicrobial MAGs.

Mapping the GI biogeography of secreted proteins. To establish the general bio-
geography of secreted bacterial proteins in the gut, we aligned publicly available
metagenomic reads from endoscopic and stool samples (41) to secreted ORFs pre-
dicted from a set of representative HGM MAGs by using Bowtie2 (see Materials and
Methods) (Fig. S5a). Quality filtering of the metagenomic reads showed a high, albeit
variable, sequencing depth across the human GI (Fig. S5b), and after mapping we were
able to obtain reasonable coverage of HGM MAGs (Fig. S5c), which implied that our
metasecretome ORFs were detectable in metagenomic GI reads.

By mapping metagenomic reads from endoscopic and stool samples to secreted
ORFs from each phylum, we were able to estimate the contribution of each phylum to
the metasecretome. We found that luminal samples mirrored stool samples more closely
than mucosal samples and that samples taken at distal sites were more similar to stool
samples than those from proximal sites (Fig. 4). This was similar to what was observed in
the KEGG Orthology functional distribution of upper and lower GI in the original study
(41). To some extent, this discrepancy arises from the varying taxonomic composition
found across the GI tract, which reflects the need for different resource-harvesting abil-
ities at each habitat within the GI tract. Across the entire GI tract, Bacteroidetes,
Firmicutes, and Proteobacteria tend to encode the highest number of secretome ORFs of
all gut phyla included in this analysis, with Bacteroidetes accounting for the highest num-
ber of mapped reads to secreted ORFs in the lower GI. Bacteroidetes tended to have
more reads mapping to secreted ORFs in luminal samples than in mucosal samples,
especially in the distal small intestine and proximal large intestine. This finding could be

FIG 4 Biogeography of the gut metasecretome. (a) Reads mapping to secreted ORFs at the mucosa along the
gastrointestinal tract. (b) Reads mapping to secreted ORFs in the lumen along the gastrointestinal tract.
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due to the diversity of dietary substrates available for degradation present in the luminal
compartment. Based on the number of secretome reads mapped against the GI metage-
nomic samples, we determined that (i) the predicted metasecretome proteins were de-
tectable throughout the GI tract, (ii) both mucosal and luminal compartments were
abundant in secreted proteins, particularly in the lower GI, and (iii) secreted proteins
from Bacteroidetes dominated the lower GI.

To determine which secreted protein functions were most abundant across differ-
ent sublocalizations of the GI tract, we mapped GI endoscopic reads to ORFs from each
EC function in the metasecretome (Table S3). We calculated a modified reads per kilo-
base per million reads (RPKM) metric for each EC function based on the mean nucleo-
tide length of ORFs annotated with the EC function (see Materials and Methods). Most
of the upper GI tract samples had little to no signal, which was likely due to (i) lower
sequencing depth of upper GI tract samples (Fig. S5b) and (ii) lower overlap between
HGM MAGs (15) derived from stool bacteria and bacteria residing in the upper GI tract
(Fig. S5c). We focused on EC functions with pseudo-RPKM values higher than 50 in at
least one GI site in order to reduce effects from noise and analyze more-prevalent ECs.
We found that two EC functions, beta-galactosidase (EC 3.2.1.23) and alpha-L-fucosi-
dase (EC 3.2.1.51), had the highest relative abundances in luminal and mucosal lower
gastrointestinal tract samples (Fig. S6). While nearly 70% of the population is lactose
intolerant (42), generally the Western human diet is high in lactose, which is a sub-
strate for beta-galactosidases (3), and previous studies have noted the presence of this
enzyme in Bifidobacteria in the gut microbiome (43).

To compare the abundance of each secreted enzyme across sites, we normalized the
RPKM values of each GI site against the highest RPKM for that enzyme, generating a z-
score for each EC and GI site. Most of the secreted proteins that we were able to map
were more abundant in lower GI samples than in stool, including numerous glycosidases
(EC 3.2.1.x) and 2-dehydropantoate 2-reductase (EC 1.1.1.169) (Fig. 5a and Fig. S7a). The
most abundant secreted EC functions in the upper GI tract were 59-nucleotidases and
39-nucleotidases. There were also several secreted glycosidases, such as cellulose and
mannan endo-1,4-beta-mannosidase, as well as a serine endopeptidase, that were over-
represented in stool samples relative to the rest of the GI tract. Generally, the lower GI
tract was enriched in secreted proteins, which is expected since Bacteroidetes tend to re-
side in the colon (9) and are major contributors to the metasecretome.

The luminal and mucosal compartments of the GI contain differing substrates that
microbes can feed on, with higher concentrations of mucin and other host glycans at
the mucosa and fiber and starches from digesta in the lumen. We posited that these
differences in substrates would result in secreted degradative proteins at different
parts of the intestine. To identify secreted EC functions that were specific to mucosal
or luminal sites of the GI tract, we took the ratio of RPKM in mucosal sites and luminal
sites (Fig. 5b and Fig. S7b). We identified glycosidases that were overrepresented in
the stomach mucosa, in particular, xylan 1,4-beta-xylosidase, sialase O-acetlyesterase,
neopullulanase, alpha-L-rhamnosidase, alpha-galactosidase, alpha-L-fucosidase, dipep-
tidyl-peptidase IV, beta-glucosidase, and beta-galactosidase. In general, most putative
secreted EC functions were enriched in the luminal areas of the GI tract. However, the
distribution of secreted EC functions became more evenly distributed between luminal
and mucosal compartments as we approached the distal end of the GI tract. Since the
mucus layer becomes thicker in the colon (9), the mucosa can harbor more bacterial
metabolic activity in the form of mucin degradation (44) and may support subsequent
cycles of cross-feeding interactions.

DISCUSSION

Here, we have presented an extensive data set of human gut secreted proteins and
an analysis of their main functions and distribution in the gut. When we analyzed the
phylogenetic distribution of secreted proteins, we found that the number of secreted
proteins encoded in different phyla varied widely, with Bacteroidetes being the main
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FIG 5 Biogeography of gut microbiome secreted functions. (a) Z-score of RPKM abundance of EC categories across gastrointestinal luminal and
mucosal samples, with stool sample repeated for ease of comparison. (b) Ratio of mucosal to luminal RPKM abundance of EC categories across the
gastrointestinal tract. Sample RPKM labels: UGI, upper gastrointestinal tract; LGI, lower gastrointestinal tract; S, stool.
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contributor to the gut metasecretome. Moreover, Verrucomicrobia also appeared to
secrete a notable portion of its proteome. We performed the most extensive compara-
tive analysis of secreted CAZymes in the gut to date and showed that Verrucomicrobia
and Bacteroidetes encode similar secreted CAZyme repertoires, which hints at similar
glycan degradation abilities. Further study on cultured isolates is necessary to verify
the degradative abilities that are encoded by these predicted secreted CAZymes. A
previous study found evidence of Bacteroidetes-Verrucomicrobia horizontal gene trans-
fer in the human gut microbiome, and CAZymes have been shown to be part of the
mobilome (45), but further research is needed to determine whether secreted
CAZymes are being shared between Verrucomicrobia and Bacteroidetes.

In this work, we found that Bacteroidetes and Verrucomicrobia tend to export a substan-
tial fraction of their proteome. A large proportion of the secretome of these two phyla is
dedicated to CAZymes that participate in the breakdown of complex carbohydrates, which
has been shown previously in certain members of these phyla in the gut (3, 5). Our observa-
tions reinforced a view that places most Bacteroidetes and Verrucomicrobia in the highest
trophic level of the gut, where they can utilize dietary fibers and mucin directly, while other
phyla benefit from the breakdown products derived from these primary degradation reac-
tions (46, 47). We also observed that secreted animal carbohydrate hydrolases were present
in higher numbers in Akkermansiaceae and Bacteroidaceae among other Verrucomicrobia
and Bacteroidetes families compared to other gut phyla (data not shown), which further
suggested that strains from these families are specialized in host glycan degradation.
Development of methods for the study of complex communities (48, 49) as well as more
high-throughput assays that can characterize CAZyme substrate specificity will be helpful
in elucidating the ecological interactions and dynamics of gut bacteria.

We have taken care to impose several filters on our secreted protein prediction;
however, signal peptide prediction is not always accurate, although algorithms have
improved over the last decade. The genomes used to train these algorithms reflect the
availability of current data, which is biased toward more well-researched phyla, such as
Proteobacteria. We also expect that a portion of the predicted secreted proteins are
periplasmic. Since some of these periplasmic proteins may become public goods via
outer membrane vesicles (50), we decided to not filter them. Because of computational
resource limitations, we focused our functional analysis of secreted proteins on one
MAG per strain-level OTU. We also clustered protein sequences and removed proteins
that did not cluster with at least 4 other proteins in the data set. This underestimated
the true diversity of the secretome, which likely varied highly at the strain level.
However, we expect this approach still leaves us with a comprehensive catalog of the
gut microbiome metasecretome. Finally, while many CAZymes we found are associ-
ated with breakdown of mucin or dietary fiber or other sources of nourishment for the
gut microbiome, some CAZymes we identified in the gut are not unique to the gut
and are involved with energy production (GH1, GH13, GH31, GH32, and GH38) or pep-
tidoglycan breakdown (GH23, GH25, and GH73) (6).

To our knowledge, this is the first study to map the bacterial secretome across the GI
tract, in which we validated the prevalence of the predicted metasecretome proteins and
identified functional enrichment in different gut habitats. We observed that many secreted
glycosidases are enriched in the luminal lower GI tract and are underrepresented in stool
samples. This underscores the importance of expanding our studies beyond stool isolates
and ensure the representation of bacteria unique to the GI tract in culturomics efforts.
Given that the gut presents a unique habitat for cooperativity and competition among
bacteria (12) with opportunities for the evolution of secreted proteins with undiscovered
degradative abilities (32), the present study shows the vastness of secreted proteins in the
gut has barely been uncovered and represents an opportunity to discover new interac-
tions among bacteria and between humans and their gut microbiome.

MATERIALS ANDMETHODS
MAGs and ORF annotation. We used the high-quality Human Gut Metagenome (HGM) MAGs

reported by Nayfach et al. (15). We selected MAGs that were in OTUs that were classified as Bacterial by
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Nayfach using GTDB-Tk (51). We annotated each MAG using Prodigal version 2.6.3 (17) to identify ORFs
by using modified settings that allowed for smaller ORF discovery (52). Briefly, we modified prodigal
source code so that we could find smaller genes; specifically, we changed the MIN_GENE parameter in
Prodigal-2.6.3/node�h to 15, so that we could identify ORFs that had 15 nucleotides or more. To ensure
the MAGs we were using were of sufficient quality, we required a minimum of 482 ORFs per MAG, since
that is the number of genes in the smallest known bacterial species, Mycoplasma genitalium (53). We
selected representative gut MAGs by taking one MAG at random from each species-level OTU in the
HGM high-quality MAG data set, resulting in 765 representative gut bacterial MAGs.

ORFs from representative MAGs were annotated with HMMER (54) using the dbCAN CAZyme data-
base (55) and eggNOG v5.0 database (26). HMMER search criteria for CAZyme identification included
0.35 minimum coverage of the CAZyme and a minimum e-value of 1e215, which were enforced using
the hmmscan-parser tool from dbCAN. eggNOG search results were required to have a minimum e-value
of 0.001. The CAZyme heatmap was clustered using seaborn with Euclidean metric and single method.
CAZyme families were removed from the heatmap if present in only one representative MAG. Broad sub-
strates were obtained using the supplementary table from Cantarel et al. (6), in addition to literature
searches using CAZydb.

Phylogenetic analysis. To construct a phylogenetic tree of all the families of interest in the Nayfach
data, we used the same method used by Nayfach but on a select set of representative MAGs, one from each
bacterial OTU, totaling 765 MAGs. In brief, GTDB-Tk was used with the classify_wf workflow to call the marker
protein sequences from MAGs using Prodigal and HMMER, aligned the concatenated marker sequences, and
used pplacer to construct a maximum-likelihood tree. This tree was plotted using iqtree version 1.6.12 with
the following server command: iqtree -s gtdbtk.bac120.user_msa.fasta -st AA -m MFP -nt 4.

Clustering and SignalP secretion tag prediction.We clustered human gut metagenome ORFs with
USEARCH (18) at 95% amino acid sequence identity. Representative sequences of clusters with more
than 5 sequences were annotated using SignalP 5.0 (19) to predict secretion tags. Sequences with a tag
corresponding to type 1 secretion or TAT secretion were considered “secreted,” and those for lipoprotein
or no secretion tag were considered “not secreted.” Protein sequences were further annotated using
TMHMM (22) to determine whether they contained transmembrane domains. Proteins that contained
transmembrane domains were classified as not secreted.

Principal-coordinates analysis of CAZymes in representative human gut MAGs. An in-house R
script (56) was used to create a matrix of counts of ORFs present in each CAZyme family from CAZydb
annotations of the representative human gut MAGs data set. If a CAZyme family had ORFs that were
secreted and nonsecreted, we counted these as two separate CAZyme families. We then calculated a dis-
tance matrix based on the Spearman correlation of the CAZyme family counts.

Mapping of secreted proteins to GI tract. We used bowtie2 version 2.4.2 (57) to align Elinav metage-
nomics reads from endoscopic and stool samples to a set of representative gut MAGs. First, we applied a simi-
lar quality-filtering method to that used by Elinav et al. (41) for their samples. That is, we used trimmomatic
version 0.39 (58) to perform adapter trimming using the following command: trimmomatic PE -validatePairs
-threads 2 -phred33 input_readsQC/eachSample_R1_001.fastq.gz input_readsQC/eachSample_R2_001.fastq.gz
eachSample_R1_paired.fq.gz eachSample_R1_unpaired.fq.gz eachSample_R2_paired.fq.gz eachSample_R2_
unpaired.fq.gz ILLUMINACLIP: TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 MINLEN:50.

Then, we performed filtering of human reads from the samples using bowtie2 against the bowtie2
index for the human genome reference Hg19. We counted unique reads mapping to secreted ORFs
from each phylum and for each Enzyme Commission functional annotation using an in-house script. We
calculated a pseudo-RPKM value for each sample using the mean nucleotide lengths of ORFs in repre-
sentative HGM MAGs that were annotated with a particular EC function. Samples taken from the same
GI site were averaged. We included in the heatmaps only EC categories that had a minimum value
greater than 50 RPKM for at least one GI site. To normalize all EC function RPKMs, we divided RPKM val-
ues in an EC function by the maximum RPKM for that EC function across all GI tract and stool samples.

Statistical analysis. Python package SciPy (59) was used to perform a Mann-Whitney U test to deter-
mine P values for the differences in protein length between secreted and nonsecreted ORFs. The same
package was used to perform a Kruskal-Wallis test and post hoc Mann-Whitney U tests with Bonferroni
corrections to determine differences in biosynthetic costs from each major phylum and differences in
percentages of proteins secreted by each major phylum and of CAZymes secreted by each major phy-
lum. MAGs were considered to be major gut phyla if there were over 50 MAGs in the data set.

Code availability. Metasecretome prediction scripts can be accessed at https://github.com/fgv2104/
gut_metasecretome.

Data availability. Predicted HGM secreted protein sequences are available for download as
HGM_secreted_orfs.faa.gz from https://github.com/fgv2104/gut_metasecretome.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TABLE S1, XLSX file, 4 MB.
TABLE S2, XLSX file, 3.9 MB.
TABLE S3, XLSX file, 0.1 MB.
FIG S1, EPS file, 0.8 MB.
FIG S2, EPS file, 0.9 MB.
FIG S3, EPS file, 2.5 MB.
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