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Pure bacterial cultures remain essential for detailed experimental and
mechanistic studies in microbiome research, and traditional methods
toisolate individual bacteria from complex microbial ecosystems are
labor-intensive, difficult-to-scale and lack phenotype-genotype integration.
Here we describe an open-source high-throughput robotic strainisolation
platform for the rapid generation of isolates on demand. We develop
amachine learning approach that leverages colony morphology and
genomic data to maximize the diversity of microbes isolated and enable
targeted picking of specific genera. Application of this platform on fecal
samples from 20 humans yields personalized gut microbiome biobanks
totaling 26,997 isolates that represented >80% of all abundant taxa. Spatial
analysis on >100,000 visually captured colonies reveals cogrowth patterns
between Ruminococcaceae, Bacteroidaceae, Coriobacteriaceae and
Bifidobacteriaceae families that suggest important microbial interactions.
Comparative analysis of 1,197 high-quality genomes from these biobanks
shows interesting intra- and interpersonal strain evolution, selection and
horizontal gene transfer. This culturomics framework should empower new
research efforts to systematize the collection and quantitative analysis of
imaging-based phenotypes with high-resolution genomics data for many
emerging microbiome studies.

Metagenomics offers the ability to broadly survey the composition
of diverse microbial ecosystems ranging from soil communities to
the gut microbiome. Yet microbes need to be isolated and cultured
to mechanistically dissect their functional roles in habitat and the
myriad of interspecies processes that occur. Traditional cultivation
methodsrelying on ‘brute force’ random colony picking are tedious and
labor-intensive'*. Serial dilution-based isolation methods using 96- or
384 wellsareresource-intensive and resultin repeated isolation of the
same dominant strains from the population’. Microfluidic systems
enable growth in nanoliter reactors, but clonal isolates are difficult

to extract®’. Given that a typical microbiome can contain hundreds
to thousands of unique species exhibiting a long-tailed abundance
distribution® (that is, few dominate while most are rare), generating
comprehensive strain collections via systematic culturomics remains
animportant and outstanding challenge.

Microbes can be distinguished based on their diverse phenotypes,
whether by their ability to grow in certain media or the metabolites
they produce’ ™. Growth-based selection can enhance the isolation
of rare species, for example, with growth media containing different
nutrients or antibiotics*'>. Mass spectrometry spectra can be used to
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differentiate between species'”, but the approach is low-throughput
and requires manual processing. Imaging-activated cell sorting has
beendevelopedtoisolate eukaryotic cells based on multidimensional
images, but this method requires sophisticated instrumentation and
has not been implemented for bacteria'®. With recent advances in
artificialintelligence (Al) and deep learning models trained to discern
nuanced features in multidimensional imaging and biological data”,
machine learning (ML) of combined phenotypic and genomic data
streams is poised to transform next-generation microbial culturomics.

Here we describe an ML-guided robotic strain isolation and gen-
otyping platform that enables rapid and high-throughput genera-
tion of cultured biobanks on demand. This system uses an intelligent
imaging-based algorithm to increase the taxonomic diversity of cul-
turomics compared to a random-picking method. We demonstrated
the utility of this system by anaerobically generating personalized
isolate biobanks for 20 human participants, yielding a total of 26,997
isolates with1,197 high-quality draft genomes, spanning 394 16S ampli-
consequence variants (ASVs). Using the paired genomic and morpho-
logical information for each isolate, we trained an ML model that can
predict taxonomicidentity based only on colony morphology. Appli-
cation of this ML model led to an improvement in targeted isolation
of microbes of interest. Large-scale imaging analysis of all colonies
grown on agar plates revealed interesting species-specific growth
patterns and interspecies interactions. Whole-genome analysis from
personalized biobanks uncovered person-specific strain-level vari-
ation and signatures of horizontal gene transfer (HGT) within major
gut phyla. We further developed an open-access web-based database
(http://microbial-culturomics.com/) containing searchable genotypic,
morphologic and phenotypic data of all isolates generated by auto-
mated culturomics as a unique and expanding community resource
for the microbiome field.

Results

Data-driven culturomics using phenotypes and automation
Colony pickingis a classic microbiology method for clonally isolating
bacterial strains. Colony growth on plates depends on many factors,
including the composition of the media (for example, available nutri-
ents), atmospheric conditions (for example, level of oxygenation), pres-
enceofinhibitory molecules (forexample, antibiotics), pH, humidity and
effects of other diffusible metabolites derived from nearby colonies'°.
Different colony morphologies are observed based on strain-specific
physiological differences, influenced by cell shape, rigidity,
motility and growth kinetics, as well as production of pigmented
molecules or extracellular matrices and surfactants® ' Although
these colony traits are readily quantifiable, they are rarely documented
during colonyisolation. As aresult, selective colony picking using visual
features is generally qualitative and not standardized, and outcomes
can vary substantially between experiments and experimentalists.
To address these shortcomings, we devised a platform dubbed
Culturomics by Automated Microbiome Imaging and Isolation (CAMII)
to systematize culturomics withboth morphologic and genotypic data
for colony isolation and functional analysis.

The CAMII platform consists of four key elements (Fig. 1a) dis-
cussed as follows: (1) an imaging system that collects morphology
data of colonies and an Al-guided colony selection algorithm, (2) an
automated colony-picking robot for high-throughput isolation and
arraying of isolates, (3) a cost-effective pipeline to rapidly generate
genomicdatafor pickedisolates and (4) aphysical isolate biobank and
digital database with searchable colony morphology, phenotype and
genotype information. Thus, this end-to-end culturomics platform
can produceisolate collections from diverse input microbiomes with
minimized manual labor. The entire imaging and isolation system is
builtusing off-the-shelf components housed in an anaerobic chamber
that provides real-time control of temperature, humidity and
oxygen levels (Fig. 1b and Supplementary Table 1). The CAMII robot

has anisolation throughput of 2,000 colonies per hour and can handle
12,000 colonies per run, whichis >20 times higher capacity and faster
than manual colony isolation by a person. To ensure that our genomic
analysis capacity matches the robotic isolation throughput, we also
developed alow-cost, high-throughput sequencing pipeline that lever-
agesliquid handling automation to generate barcoded libraries for 16S
rRNA sequencing or whole-genome sequencing (WGS; Methods). The
cost perisolate in this pipeline is $0.45 for colony isolation and genomic
DNA (gDNA) preparation, $0.46 for 16S rRNA sequencing and $6.37 for
WGS atacoverage of >60x onan llluminaHiSeq platform, whichis sub-
stantially cheaper than commercial services (Supplementary Table 2).

Akey unique feature of the CAMII platformis the imaging system
that collects and learns from morphological data of bacterial colonies
(Fig. 1c). Specifically, transilluminated images, which show height,
radius, and circularity of a colony and epi-illuminated images, which
show color and complex morphological features such as wrinkling,
are captured on CAMII to yield a multidimensional and quantifiable
morphological dataset. We developed a custom colony analysis pipe-
line that segments colonies along diverse morphological features
(Methods; Supplementary Table 3 and Supplementary Fig. 1). Area,
perimeter and mean radius reflect colony size, while circularity, con-
vexity and inertia reveal colony shape. Pixel intensities and their vari-
ancesinthered, green and blue (RGB) channels highlight any density
gradations and colors across a colony (Fig. 1d). We next reasoned that
morphologically distinct colonies are more likely to be phylogeneti-
cally diverse, which could be used to improve colony isolation. Thus,
we developed an imaging-guided ‘smart picking’ strategy to isolate
more diverse isolates by embedding colonies in a multidimensional
Euclidean space based on captured features and selecting maximally
distant points in this space representing the most morphologically
distinct colonies (Supplementary Fig.1; Methods). To further increase
the diversity of bacteria that can be cultured and examined, CAMIl also
uses different antibiotic supplements to enrich the most unique and
diverse subsets of microbes"” (Supplementary Fig. 2a,b). For instance,
in a healthy human gut microbiome sample (H1t1), three antibiotics
(ciprofloxacin, Cip; trimethoprim, Tmp; vancomycin, Van) with dif-
ferent mechanisms of action elicited the most distinct enrichment
cultures (Fig. 1e and Supplementary Fig. 2c).

To systematically evaluate the capacity and fidelity of imaging-
guided colony isolation, we applied CAMII to gut microbiome samples
from three human volunteers (H1t4, H5t1 and Hé6t1; Supplementary
Table 4). Morphological data from plated colonies were analyzed by
principal component analysis (PCA) to assess the most informative
visual features (Fig.1c and Supplementary Fig. 1c; Methods). Interest-
ingly, colony density and size were the most dominant signatures
(principal components1land 2, respectively) that together accounted
for 72.0% of the morphological variance (Supplementary Fig. 3). We
then used the CAMII robot to isolate 6,144 colonies, roughly half of
them were randomly picked from mGAM plates and another half by
using our imaging-guided ‘smart picking’ strategy and antibiotic
selection. Isolates were grown in 384 wells and subjected to 16S rRNA
sequencing for taxonomy identification. Unique 16S V4 sequences
were then clustered into ASVs (100% identity cutoff) that provide
approximate species-level identity”’. Remarkably, colony isolation
informed by phenotypic datayielded a substantially more diverse set
of ASVs than compared to random isolation for all three microbiome
samples (Fig. 1f). For example, to obtain 30 unique ASVs, we require
only 85 11 colonies to beisolated using ourimaging selective strategy
compared to 410 + 218 colonies needed by random selection. Notably,
this enhanced isolation efficiency was maintained throughout pick-
ing, implying that thereis a sustained advantage in using our strategy
at arange of desired isolation depth (Supplementary Fig. 4a), and
the generated isolate collection better represented the underlying
input microbial diversity and was substantially more evenin composi-
tion as measured by Shannon’s equitability (Supplementary Fig. 4b).
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Fig.1| A data-driven microbial isolation strategy using phenotypic and
morphologicfeatures. a, Framework of phenotype and morphology-driven
strain isolation and data collection of the human gut microbiome. Human fecal
samples were plated and cultured under different antibiotics selection and
morphologically diverse colonies were thenisolated, biobanked and analyzed
by downstream sequencing. b, Setup of the automated anaerobic microbial
isolation and cultivation system CAMIL. ¢, lllustration of morphology-guided
colony isolation on CAMILI. Colonies grown on plates are imaged under trans-
and epi-illumination and subjected to contour segmentation and morphologic
features extraction. Data are analyzed by PCA to identify the set of most
morphologically diverse colonies that are thenisolated by anintegrated colony
picker. d, Illustration of diverse colony morphology on plates. Colony size

and shape features were extracted from transilluminated images, and colony

color features were extracted from epi-illuminated images. e, Fecal sample

Hitl were cultured with seven different antibiotics to evaluate their capacity
toyield the most unique and diverse bacteria by 16S analysis at the family level.
Ciprofloxacin, trimethoprim and vancomycin were selected for subsequent
colony isolations. f, Number of unique ASVs obtained from phenotype-guided
isolation compared to random isolation of three human fecal samples H1t4, H5t1
and Hétl. Isolation was performed by CAMII; random isolation was performed
onarandomsubset of all detected colonies on the plates, and phenotype-guided
isolation was performed on morphology-selected colonies by the algorithm
(Supplementary Fig. 1b). Pvalue s calculated by a two-sided paired ¢-test on area
under the curve. Ribbons on the curves represent the standard deviations of the
number of obtained unique ASVs by the algorithm.

Phylogenetic analysis of isolates showed that CAMII-optimized colony
picking substantially improved the diversity of obtained microbes
(Supplementary Fig. 5). This advantage is particularly evident given
that finding unique ASVsbecomes asymptotically more difficult withan

increasing number of isolates. Altogether, these results demonstrated
our Al-guided data-drivenisolation frameworkin the CAMII platform
can substantially increase the efficiency of culturomics and lessened
thelabor toisolate especially rare species.
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Fig. 2| Generation of personalized gut isolate biobanks for 20 individuals.

a, Statistics of 20 personalized gut isolate biobanks. b, Phylogenetic tree of 394
ASVs covered by 26,997 gut microbiome isolates in this study. Neighbor-joining
tree of phylogeny was constructed based on 16S V4 sequences. Branch color
distinguishes bacterial phylum, and the outer circle shows the prevalence of
isolated ASVs in the 20 biobanks. ¢, Number of isolates for top 20 family-level
taxonomy. d, Accumulated relative abundance of the ASVs represented by
isolates from personalized biobanks in original fecal samples. The bars show
isolates from any individual in the entire collection and the red lines show isolates
derived from the same person. e, Heatmaps for relative abundance of abundant

Undercultured ASVs

ASVsin original fecal samples and presence or absence in the biobanks. ASVs
with average relative abundance > 0.1% are shown and the side bar on the left
represents their family-level taxonomy. ASVs found in personalized biobanks
areshown as black bars in the right heatmap and uncultured ASVs not found
inany biobank are highlighted. f, Correlation of average relative abundance
inoriginal feces sample and number of isolates in entire collection for ASVs.
Highly abundant ASVs that are difficult to culture, that is, with fewer isolates, are
highlighted. g, Average relative abundance of top abundant ASVs but with no
more than2isolates in the entire collection. Color of bars represents family-level
taxonomy.

Rapid generation of personalized gut isolate biobanks

While microbiomes from different people may share similar sets of bac-
terial species, the strains belonging to these species are highly unique
totheindividualand may co-colonize the same host for many years??.
We sought to showcase the utility of CAMII to generate personalized
gutisolate collections for 20 healthy people (Supplementary Table 4
and Supplementary Fig. 6a,b). A total of 102,071 colonies were visually
analyzed and 26,997 colonies were picked and taxonomically identified
by 16S rRNA sequencing (Fig. 2a), yielding 394 unique ASVs that cover

abroad diversity of healthy commensal gut microbiome (Fig. 2b,c and
Supplementary Table 5).

To assess the comprehensiveness of this isolate collection, we
calculated the abundance of isolated ASVs in the corresponding fecal
samples by bulk 16S rRNA sequencing (Fig. 2d). Remarkably, for each
individual, 80.9 £ 9.4% of the ASVs by abundance are represented at
least once in the entire isolate collection. Isolates derived from each
person constituted on average 45.6 + 21.6% of the total bacterial ASV
abundance within that individual (Fig. 2d). Moreover, comparison of
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isolate collections and bulk feces samples showed most of the highly
abundant and prevalent ASVs are isolated at least once in the collec-
tion (Supplementary Fig. 6¢c-e). Moreover, each personalized isolate
collection mimics the bulk feces sample with comparable microbiome
profiles and Shannon’s diversity index (Supplementary Fig. 6f,g).

In all, we demonstrated the use of CAMII to build a deep human
gut isolate collection containing 26,997 isolates spanning 394 ASVs,
witharichset of linked morphologic, phenotypic, taxonomic and WGS
data. To increase its utility for the research community, we further
developed asearchable online resource (http://microbial-culturomics.
com) to house all CAMII-enabled biobank data including genomes,
phenotypes and images. We envision this portal will facilitate further
genotype-to-phenotype analyses and lead to more shared isolate
collections from other environments.

Identifying undercultured ‘dark matter’ gut microbiome
Previous studies have observed that many microbes from different
environments are difficult to culture in the laboratory***. We there-
foreleveraged our systematically generated isolate biobanks to assess
the culturability of the human gut microbiome and to identify bac-
terial ASVs that remain recalcitrant to isolation in our experimental
setting. Across all 20 personalized isolate collections, we determined
whether abundant ASVsin the bulk fecal matter (average relative abun-
dance > 0.1%) are found in the biobank. Notably, a substantial fraction
of the uncultured gut bacteria belonged to the Ruminococcaceae and
Lachnospiraceae families (Fig. 2e and Supplementary Table 6), which
has also been previously documented as ‘unculturable’®. For each
ASV, we compared the number of isolates generated in our total isolate
collection versus their average abundance in the bulk feces (Fig. 2f),
which appeared tobe positively correlated. Still, weidentified a set of
abundantyet difficult-to-culture bacteria, including Faecalibacterium
ASV-58, Prevatella ASV-470 and ASV-324, Oscillibacter ASV-215 and
Clostridium XlVa ASV-287 (Fig. 2g). Interestingly, Faecalibacterium
ASV-58, from which we obtained one isolate and performed WGS,
matched with >98% genome-wide average nucleotide identity
(ANI) to the metagenome-assembled genome (MAG) of Candidatus
cibiobacter qucibialis. This strain in our collection was previously
reported as the most abundant uncultured species in human gut®
and is highly depleted in inflammatory bowel disease (IBD) patients,
as are other Faecalibacterium strains™.

We further compared isolates in our biobanks to existing data-
base***? by WGS and identified 11additional species that had not been
cultivated in any reference collections (BIO-ML, CGR and HMP) but
are only associated with MAGs in the SGB collection (Supplementary
Fig.7and Supplementary Table 7). For example, besides Faecalibacte-
rium ASV-58, we isolated another abundant species Faecalibacterium
sp. ASV-76 that represents >3% relative abundance on average in the
bulk fecal matter, which further expands the collection of culturable
gut microbiomes. Together, these results highlight cultured isolates
and the remaining missing diversity based on our current media and
growth conditions, and offer directions to guide future culturomics
efforts focused on these ‘dark matter’ gut microbiome (Supplemen-
tary Table 6).

Taxonomy prediction from morphology enables targeted
isolation

Focused cultivation of bacteria of interest from amicrobiome sample
canbe crucial for mechanistic studies. Unfortunately, we lack the capac-
ity to selectively culture most bacterial species in a specific manner.
Consequently, picking alarge number of colonies and relying on statis-
tical probability is the only practical solution for obtaining bacteria of
interest. This strategy, however, is often too resource-consuming as it
may require manually picking thousands of colonies. CAMII offers an
ML-guided and automated colony selection method based on linking
taxonomical identity to colony morphology and thus could in theory

enhancetargeted isolation. To test this, we systematically probed our
deep gut isolate collection to analyze the relationship between mor-
phologic and genotypic data. Interestingly, colonies of different genera
exhibited diverse morphological patterns (Fig. 3a,b). For example, colo-
nies of Dorea, Bacteroides and Collinsella are generally large and dense
but show different circularities (Collinsella > Bacteroides > Dorea),
reflecting differences in their growth characteristics. On the other
hand, colonies of Faecalibacterium are smaller and fainter, in line with
our earlier results of their poor culturability. Furthermore, colony
morphologies are significantly clustered according to their phylogeny
(P=0.008 by PERMANOVA test in Fig. 3c). For instance, most genera
of Clostridia are closer to each other by morphology-based ordination
(Fig. 3c). Therefore, colony morphologies may embed a substantial
amount of information that could be linked to taxonomic identities.

We assessed whether taxonomic identity of colonies could be
uniquely predicted by only incorporating their morphologicinforma-
tion on plates. We trained a random forest classification model using
morphology and taxonomy data from randomly selected subsets of
isolates (70% of the total; Methods). The model performance was evalu-
ated ontheremaining 30% of isolates. Remarkably, our model achieved
~70% precision for most genera that had more than100 isolatesin the
training dataset (Fig. 3d). The recall rate at the genus level varied more
widely, highlighting open opportunities to use more sophisticated
models to learn additional unique colony features” . Some genera
such as Eggerthellahad high precision and recall, indicating that highly
conserved and unique colony morphologies could be specifically
leveraged for taxonomic predictions. When analyzingisolates fromthe
same ASV, we found that colony morphology was highly conserved for
isolates within the same person but was much more variable between
isolates from different people (Supplementary Fig. 8). Given that differ-
ent people usually carry distinct strains of the same species, our results
suggested a high degree of strain-level variation in colony morphology.

To assess whether Al-informed colony features can improve tar-
geted microbe isolation, we next trained random forest models on our
biobankisolates data from three different people separately (H12, H13
and H14). The models were used to predict colonies of Bifidobacterium,
Parabacteroides and Eggerthellafrom new plates derived fromthe same
fecal samples, and the colonies were then isolated by CAMII and 16S
rRNA sequenced to confirm taxonomic identity (Methods). Notably,
morphology-guided picking substantially improved the isolation
efficiency for these targeted genera by up to eightfold on average
(Fig. 3e), largely increasing the precision of picking and mitigat-
ing the need to screen many colonies to find the desired microbes.
These results emphasize the value of our biobank datasets that link
phenotype to genotype and demonstrate taxonomic predictions
fromvisual colony features alone, which can greatly enhance targeted
microbial isolation.

Interbacterial growth associations between gut microbiota

Bacterial colonies caninfluence the growth of their neighbors through
speciesinteractions such as competing for nutrients or cross-feeding
essential metabolites. Previous studies suggest that neighboring cells
can critically affect the size of colonies in a predictable manner®.
Because CAMII can track the kinetic growth of colonies continuously,
we systematically probed the cogrowth associations between gut
isolates on agar plates. A fecal sample (H1t5; Supplementary Table 4)
was plated and imaged daily, and all colonies were subsequently
isolated onday 6 and their taxonomicidentities were determined with
16S sequencing (Fig. 4a). For each ASV, the cumulative area of colonies
on agar plates correlated with their abundances in the original fecal
sample (Supplementary Fig. 9), indicating that our in vitro conditions
generally fostered growth to the same degree as in the gut. Interest-
ingly, colonies belonging to the Faecalibacterium genus exhibited
slower initial growth and only began to emerge in the presence of other
nearby growing colonies (Fig. 4b; Methods). This observation suggests
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that commensal or mutualistic interactions may be at play between
Faecalibacterium and other species.

To more systematically study species interactions enabled by
CAMII, we analyzed the colony morphology, taxonomic identity and
colony neighborhood data together. We aggregated morphology
dataand physical coordinates from 102,071 visually captured colonies
(26,997 isolated) and assessed whether a colony’s growthis affected by
neighboring cells. Surprisingly, we observed a number of interesting
cogrowth patterns that may reflectinterspeciesinteractions (Supple-
mentary Table 8). For example, the colony size of Phocaeicola vulgatus
ASV-6 is negatively correlated with the number of neighboring cells,
consistent with ascenario that there are general negative interactions
mediated by competition or antagonismbetween P. vulgatus and other
bacteria in the gut®® (Fig. 4c). On the other hand, Faecalibacterium
prausnitzii ASV-39, one of the species associated with slower initial
growth in colony kinetics (Fig. 4b), grew larger colonies with more
neighbors reflective of a positive species interaction (Fig. 4¢).

We next incorporated taxonomic information of nearby
colonies and looked at how the colony size of a specific genus could
be affected by other genera. Briefly, for each pair of genera, we com-
pared the colony sizes of one genus with the other genus presentin the
neighborhood and without any colonies present (Methods). Remark-
ably, we identified isolates from two genera, Faecalibacterium
and Clostridium IV, that grow into larger sizes when the isolates
were close to Bifidobacterium, Phocaeicola and Bacteroides (Fig. 4d).
Faecalibacterium and Clostridium IV have been reported to be major
butyrate-producing bacteriain the gut and could benefit from cocul-
ture growth with Bifidobacterium and Bacteroides species® **, which
is consistent with our findings. On the other hand, we observed that
Phocaeicola isolates are smaller with Faecalibacterium isolates as

neighbors (Fig. 4d), indicating that the cogrowth interaction might
be beneficial to only one side. Furthermore, consistent with our
previous correlation analysis that examined neighboring isolate
numbers without the consideration of neighbors’ identity, we observed
that the growth of Phocaeicola and Bacteroides could be inhibited by
multiple other genera, suggesting further investigations to better
understand the underlying mechanism of these positive and nega-
tive interactions between gut microbiota. Together, our results high-
light that CAMII can reveal colony cogrowth patterns governed by
interspeciesinteractions, which may help identify growth-promoting
microbes and their diffusible metabolites that stimulate in vitro growth
of fastidious species.

Intra- and interpersonal genomic diversity of gut strains
Mappingthe strain-level genome-wide diversity of gut bacteria within
aperson is important for understanding the dynamics of gut coloni-
zation and the drivers of bacterial selection and adaptation specific
to each human host"***. A key advantage of the CAMII system is the
ability toisolate and perform WGS for alarge number of isolates to help
investigate inter- and intrapersonal genomic variations. As such, we
selectedisolates covering the most unique and prevalent ASVs from our
20-person microbiome biobank and performed WGS that yielded 1,197
high-quality draft genomes (Supplementary Fig.10 and Supplementary
Table 9). Genome assemblies were further analyzed to determine the
accurate species-level taxonomy of isolates (Methods).

We first explored the interpersonal strain-level genomic varia-
tions across our isolate collection (Methods). Consistent with previ-
ousreports"**, mostisolates within the same individuals had very few
genomic variations (that s, less than 10? SNPs) while isolates between
people differed by 10>-10° genome-wide SNPs (Fig. 5a). Interestingly,
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some phylogenetically distinct isolates (that is, more than 10* SNPs)
of the same species were observed to coexist within the same person
(Fig. 5a). For instance, two distinct strains of P. vulgatus were isolated
from the H4 individual and two distinct strains of B. uniformis were
found inthe H2 individual (Supplementary Fig. 11).

We next sought to assess the strain-level diversity within a single
person by analyzing 408 isolate genomes derived from the H1 indi-
vidual (Supplementary Fig.10; Methods). Because abundant speciesin
thegut are expected to undergo more cell divisions, we hypothesized
that they may accumulate more SNPs across their genomes, assum-
ing approximately the same duration of gut colonization. Indeed, the
number of genome-wide SNPs within each taxon is generally correlated
with its abundance in the original microbiome (Fig. 5b). B. fragilis
shows a higher proportion (56.0%) of leaf SNPs (that is, presentin only
one genotype) while other species show much lower proportions,
including P. goldsteinii (20.5%), B. stercoris (22.4%) and B. xylanisolvens
(25.6%), which suggests differential population bottlenecks and selec-
tive sweeps at the species level. At the gene level, we also observed
evidence of convergent adaptive evolution. For instance, between
different P. doreiisolate lineages, we identified two coding variantsin
gene TodS (Supplementary Fig.12), which encodes a two-component
kinase sensor regulating toluene metabolism in bacteria®. Toluene
and other aromatic hydrocarbons are foundinfoods and are also used

as industrial feedstocks that could contaminate foods and thus drive
evolutioninthe gut”.

Another major driver of within-person gut microbiome evolution
isHGT. Accordingly, we used all whole-genome sequenced Hlisolates
toreconstructan HGT network of shared DNA elements >2 kbin length
(Methods). Consistent with recent reports**?*’, we observed that HGT
events were strongly linked to the phylogeny of the isolates, that is,
most HGT events occurred within the same phyla but were also quite
prevalent across different families and between distinct species (Fig. 5c
and Supplementary Table 10). Interestingly, we observed that HGTs
were predominantly enriched between isolates with the same Gram
staining, with Gram-negative species showing more prevalent HGTs
than Gram-positive species (P = 0.0005 by Pearson’s chi-squared test).
Thisresult is consistent with recent finding® and suggests that differ-
ent cell wall structures may play an important role in HGTs. Notably,
HGTsbetween Gram-positive and -negative species were also observed
in our dataset, inspiring future studies to study the effect of cell wall
structures on HGTs and engineer these HGT elements into a micro-
biome editing tool. Next, to examine whether these HGTs occurred
recently, we calculated the mean HGT frequency between all species
pairs (Methods). We hypothesized that if HGTs occurred recently
between two species, they would be only associated with a small pro-
portion ofisolates, resulting in alow frequency between species, while
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ifHGTs occurred earlier and provided growth benefits, they would be
enriched and vertically inherited by later generation, resulting ina high
frequency. Interestingly, we found most HGT elements were frequently
present across isolates (71.5% HGTs with >50% frequency), especially
for ones within Bacteroidaceae species (Fig. 5¢), suggesting that they
occurredinthe distant pastand were enriched under strong selection
within the gut environment.

Giventhe high prevalence and frequency of within-individual HGT,
we next annotated the protein-coding sequences of the most wide-
spread HGT elements to probe their potential functions (Methods).
Interestingly, we identified multiple antibiotic resistance genes
(ARGs) with different mechanisms of action as well as secretion system
genes (Supplementary Fig. 13). For example, the top four most wide-
spread HGT sequences are found surprisingly in at least 13 different
species of Bacteroidaceae, Porphyromonadaceae, Odoribacteraceae,
and Rikenellaceae and contained multiple ARGs including ribosomal
protectors and antibiotic efflux pumps, as well as type Ill and type IV
secretion systems. While ARGs and secretion systems shared through
HGT may confer clear evolutionary advantages*®*, there were numer-
ous widespread elements across different species with genes of
unknown function (Supplementary Fig. 13), hinting at unexplored
mechanisms that drive their long-term persistence in the gut. Taken
together, theseresults highlight thatisolates withinand across people
have genomicdiversity that can be systematically characterized using
CAMlI-enabled deep strainbiobanking and genomic analysis to study
person-specific gut microbiome colonization, adaptation and ecology.

Discussion

Strain isolation from the gut microbiome has historically been per-
formedinanad hoc manner whereimportant phenotypic features are
inadequately captured and poorly documented alongside genomic
data. Here we described the CAMII platform to industrialize the gene-
ration of isolate biobanks by leveraging automation, machine vision,
supervised learning and genomics. When combined with low-cost 16S
and whole-genome sequencing, the systematically generated phe-
notypic and genomic data produced from the pipeline forms arich

resource to study microbial colony morphology, diversity and evolu-
tion. Using the gut microbiome as ashowcase example, CAMII-enabled
isolation yielded extensive isolate biobanks from 20 healthy individuals
that in aggregate covered >80% of all microbiota by abundance pre-
sent. Thisisolate collection covers a majority of microbial diversity in
the healthy gut and is one of the most extensive personalized isolate
biobanks described to date. Using this resource, we demonstrated that
quantitative analysis of colony morphologies can predict taxonomy,
enhancetheisolation of targeted genera and reveal potential interac-
tions between microbes. Systematic analysis of genomic differences
betweenisolates withinand across people revealed interesting patterns
of population selection, adaptation and HGT.

The majority of the data presented here relied on a common
mGAM-rich media for strainisolation and characterizationin the con-
text of the human gut microbiome. Exploration of alternative media
formulations, other micronutrients and macronutrients, and host or
environmentally associated biochemical perturbations (forexample,
bile acids and xenobiotic compounds) could yield morphologic and
growth profile changes thatinformunexplored physiologies and char-
acteristics of the gut microbiome. The interspecies interactions derived
from CAMII datasets could be further used to systematically map out
the drivers of microbiome dynamics. We envision that these inter-
actions could facilitate cultivation of recalcitrant ‘dark matter’ micro-
biome by helping to identify unknown microbially-derived molecules
that promote cooperative growth observed in this and other studies.

The CAMIIsystem uses commercially available off-the-shelf com-
ponents and open-source code that can be readily replicated by other
researchers (see Supplementary Table 1 for list of components). We
envision that the searchable online portal will facilitate sharing of
standardized phenotypic and genomic data, which is poised to grow
over time. The CAMIl hardware could be further expanded tointegrate
mass spectrometry measurements to gainadditional colony character-
istic profiles that can improve species and metabolite identification.
Onboard automated microscopy could further introduce orthogonal
data streams to visualize microbial cells at micrometer resolution
across different spectral channels. Improved machine vision and
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ML algorithms could yield evenbetter strain predictions and enhance
isolation performance.

Becauseindividual strains are the unit of action within acomplex
community, more complete strain collections are needed. Such com-
prehensive biobanks can be used to recreate a more holistic context
that takesinto account the composition, interspeciesinteractions and
metabolic capacity of the entire community, which willimprove studies
of microbiome function, dynamics and stability. Beyond the human
gut, CAMII canbe useful for other microbiomes such as those fromsoil,
aquatic or agricultural settings, including further isolation and analysis
of phages, fungi and protozoa. The robotic automation system can also
help generate systematic strain libraries such as arrayed transposon
insertion knock-out collections* or functional genomics expression
libraries* as well asimprove screening for tractable microbial chassis
for genetic engineering**.
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Methods

Ethical review

This study was approved and conducted under Columbia University
Medical Center Institutional Review Board protocol AAARO753. Written
informed consent was obtained from participants in the study.

Fecal sample collection and storage

Fresh fecal samples were collected from 20 healthy human donorsand
processed within 3 h of defecation. Briefly, feces were collected using
the Commode Specimen Collection System (Fisher, 02-544-208). An
inverted sterile 200-pl pipette tip (Rainin, RT-L200F) was used to core
out asmall sample from the stool specimen, which was then immedi-
ately placed in a sterile cryovial (Fisher, NC9347001). The collected
fecal samples were then transferred to an anaerobic chamber (Coy
Laboratory) and homogenized in 5 mlof prereduced PBS by thorough
vortexing. Homogenized samples were further passed through a40-pt
filter (Fisher,22363547) to remove dietary debris, aliquoted into mul-
tiple cryovials with glycerol (20% final concentration) and transferred
toa-80 °Cfreezer for long-term storage.

Plate preparation and bacterial culture

Allgutmicrobiotaweregrownin GifuAnaerobic Medium Broth, Modified
(mGAM:; HyServe, 05433) under anaerobic conditions (5% H,,10% CO,
and 85%N,) inananaerobic chamber. Briefly, 1.5% agar plates (Thermo
Fisher Scientific, 242811) with mGAM media were made using a peristal-
tic pump (New Era Pump Systems NE-9000) and labeled with unique
barcodes. For plates supplemented with ciprofloxacin (10 pg ml™),
trimethoprim (50 pg ml™) or vancomycin (50 pg ml™), antibiotics were
added during plate preparation. All plates were then transferred to the
anaerobic chamber and prereduced for ~24 h before plating. Frozen
fecal samples were thawed in the anaerobic chamber and diluted to 10
CFU per mlfor each culturing condition. Optimal dilutions were deter-
mined by sample-specific serial dilution experiments. Two hundred
microliters of diluted fecal samples was then dispensed onto the plate
and spread using sterile glass beads. Plates were sealed in Ziploc bags
toreduce desiccation and incubated at 37 °C for 5 d of colony growth.

Strainimaging and isolation
Strainimaging and isolation was performed using a custom automated
imaging and colony-picking system (CAMII). After 5 d of growth, agar
plates wereimaged automatically on the CAMII system (Fig. 1c). Briefly,
plates were first placed on a carrousel stacker. A robotic arm gripper
carried individual plates past a barcode scanner to an illuminated
imaging platform on the colony picker where they were imaged under
two lighting conditions (epi-illumination and transillumination) by the
Hudson RapidPick control software. The plate labels are linked to the
captured images and imaged plates were automatically restacked by
therobotic arm. Following completion of the imaging process, plates
were sealed in Ziploc bags to avoid desiccation and a custom script
was used to segment different colonies and identify morphologically
unique colonies for subsequent picking based on plateimages (Supple-
mentary Fig. 1a). Morphologic features include area, perimeter, mean
radius, circularity, convexity, inertiaand mean and variances along gray
channel (transilluminated images) and RGB channels (epi-illuminated
images). Raw images of all colonies on the plate are also collected.
For random picking performed in this study, arandom subset of
agiven number of colonies was generated from all detected colonies
by the script and the automatic isolation was performed on these
colonies. For phenotype-guided picking, all detected colonies were
first subjected to optimized selection based on their morphology, and
asubset ofagiven number of colonies with maximized morphological
diversity wasisolated by CAMII. Detailed algorithm of optimized colony
selection can be found in Supplementary Fig. 1b, and scripts used to
analyze plate images and colony morphologies can be accessed at
https://github.com/hym0405/CAMII.

After analyzing plate images and generating a list of colonies to
pick, asimilar robotic protocol was executed to isolate these colonies.
Firstly, plates were restacked for picking and a multichannel media
dispenser was used to dispense 50 pl of MGAM liquid mediainto each
well of two barcoded sterile 384-well optical plates (Thermo Fisher
Scientific,12-566-2; duplicate ‘A’ and ‘B’), which were then moved to the
colony picker. Next, an agar plate was transferred to the colony picker
and heat-sterilized needles picked individual coloniesinto the duplicate
optical plates. Plates were automatically switched out when all targeted
colonies were picked (agar plate) or all wells were inoculated (optical
plate). After colony picking, inoculated optical plates were trans-
ferred to a plate sealer (Brandel, 9795), sealed and restacked. Optical
plates were then incubated at 37 °C for ~5 d for bacteria culturing.
Afterbacterial growth, ‘A’ plates were subjected to downstream gDNA
extractionand 30 plof 40% glycerolwas added to each well of ‘B’ plates,
which were transferred to -80 °C for long-term storage.

Colony morphology analysis

Toachieve morphology-guide colony selection, colony morphological
features extracted in raw image processing were centralized and scaled
tounitvariance and thenembedded by PCA. An optimized colony selec-
tion algorithmwas further applied toembedded features to search aset
of colonies with most morphological diversity (Supplementary Fig. 1b).

Toevaluate how different ASVs respond to nearby colonies (Fig. 4c),
number of nearby colonies were calculated for isolates on plates, and
‘nearby colony’ pair was defined as two colonies with distance between
their X-Y coordinates shorter than 30 pixels plus the sum of their
radii. To avoid potential impact of antibiotics on colony morphology,
only colonies grown on mGAM-only plates were used for morphology
analysis.

To evaluate how the growth of a specific genus could be affected
by other genera (Fig. 4d), we first identified ‘nearby colony’ pairs as
described above, and the growthimpact of genus-A ongenus-Bis quan-
tified by comparing the colony sizes of genus-B with genus-A present
in the neighborhood, that is, as nearby colony, to the colony sizes of
genus-Bwithout any nearby colonies: the effect size was defined asthe
fold-change of average colony size with genus-A present to average
colony size without any nearby colonies, and the P values were calcu-
lated by Mann-Whitney Utest on the size distributions between with
genus-A presentin the neighborhood and without any nearby colonies,
and false discoveryrate (FDR) correction was performed using Bonfer-
roni-Holm methods. To avoid potentialimpact of antibiotics on colony
morphology, only colonies grown on mGAM-only plates were used for
morphology analysis.

Taxonomy prediction and targeted isolation

To test whether colony morphology on plates could help predict taxo-
nomicidentity, colonies of data-richgenus (>100 isolates across all 20
individuals) were subjected to model training and testing. Considering
the potential impact of antibiotics perturbation and neighbor colonies,
amultilabel random forest model was trained on 70% of isolates, which
wasrandomly sampled using 14 colony morphological features, antibi-
otics condition and number of nearby colonies, and the performance
(precisionand recall) of the model was evaluated on the remaining 30%
ofisolates. The procedure of model training and evaluating was boot-
strapped 20 times with different randomization settings to minimize
bias, and the background performance of the model was calculated by
null model (prediction based on the number of isolates). To perform
targeted microbial isolation, a multilabel random forest model was
trained on colonies of data-rich genus (>15 isolates from the same
individual) fromindividuals H12, H13 and H14 separately as described
above. The same fecal samples were then plated out and the model
was applied to the new plates after bacterial growth to screen all colo-
nies on plates and predict colonies of targeted genus-level taxonomy.
All colonies of the plates were then isolated on CAMII and subjected
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to 16S V4 sequencing to identify their taxonomy and evaluate the
performance of targeted isolation.

Daily kinetic growth analysis of colonies on plate

To monitor the growth kinetics on a daily basis, fecal sample H1t5 was
plated out on mGAM-only plates and the plates were imaged every day
during 6 d of growth. Colony detection and segmentation were per-
formed onimages, and colony morphology features on different days
were matched based ontheir X-Ycoordinates (Fig.4a). All colonies on
plates were thenisolated on CAMIl on day 6 and subjected to taxonomy
identification by 16S rRNA sequencing. To quantify differential initial
growth of genera, the number of detectable colonies of each genus on
each day (tracked by x-y coordinates) was normalized to their total
number of colonies on day 6 to calculate the proportion of detectable
colonies (Fig. 4b) at each day.

gDNA extraction

gDNA of picked isolates were extracted in 384-well format using asilica
bead beating-based protocoladapted froma prior study*. Firstly, 40 pl
0.1mm ZirconiaSilicabeads (Biospec,11079101Z) and 120 pl lysis solu-
tion (50 mM Tris-HCI, pH7.5and 0.2 mM EDTA) were added to each well
of 384-well deep-well plates (Thermo Fisher Scientific, 07-202-505).
Next, 40 pl culture solutions of isolates were added to each well and the
plates were centrifuged for 1 min at 4,500g and affixed with a sealing
mat (Axygen, AM-384-DW-SQ). To avoid overheating during bead beat-
ing, the plates were vortexed for 5 sand incubated at —20 °C for 10 min
before beating. Then, plates were fixed on abead beater (Biospec, 1001)
and subjected to bead beating for 5 min, followed by a10-min cooling
period. The bead beating cycle was repeated once and plates were
centrifuged at 4,500g for 5 min to spin down cell debris. Next, 10 pl
celllysate was transferred to a384-well PCR plate (Bio-Rad, HSP3801)
and 2 pl proteinase K solution (50 mM Tris-HCI, pH 7.5 and 1 pg pl™
proteinase K (Lucigen, MPRK092)) was added using a Formulatrix
Mantis. Finally, cell lysate was subjected to proteinase K digestion on
athermal cycler (65 °C 30 min, 95 °C 30 min, 4 °C infinite) and trans-
ferredto-20 °Cfor long-term storage. gDNA extraction for bulk feces
sampleswas performed using the same protocol with scale-up reaction
volumes in 96-well format.

16S rRNA amplicon sequencing

16S sequencing of the V4 region for isolates taxonomy identification
was performed in384-well format using a set of dual-indexing sequenc-
ing primers. Briefly, barcoded 16S V4 amplicon primers were designed
based onuniversal 16S V4 primers and synthesized by Integrated DNA
Technologies. Next, 1 pl of each unique combination of barcoded
forward primer 16SV4f_5xx and reverse primer 16SV4r_7xx were trans-
ferred to a 384-well PCR plate using Labcyte Echo to make unique
dual-indexed primer plates. Then, ~130 nl of gDNA was transferred to
a primer plate by a 384-well pin replicator (Scinomix, SCI-6010.0S)
and 2 pl NEBNext Q5 PCR master mix (NEB, M0543L) was added toeach
well using Formulatrix Mantis. The samples were then subjected to16S
V4 amplification on athermal cycler (98 °C30s,40 cycles: 98°C10s,
55°C205,65°C60s; 65°C5min; 4 °Cinfinite). Theresultingamplicon
libraries were manually pooled and subjected to gel electrophoresis
on E-Gel EX Agarose Gels, 2% (Thermo Fisher Scientific, G402002).
Expected DNA bands (-390 bp) were excised from gel and extracted by
Wizard SV Gel and PCR Cleanup System (Promega, A9282) following
the manufacturer’s instructions to remove PCR primers and adapter
dimers. Gel-purified libraries were quantified by Qubit dsSDNA HS assay
(Thermo Fisher Scientific, Q32851) and sequenced on lllumina MiSeq
platform (reagentkits: v2300-cycles, paired-end mode) at 8 pMload-
ing concentration with20% PhiX spike-in (Illumina, FC-110-3001) along
with custom sequencing primers spiked into Miseq reagent cartridge
(6 plof 100 pM stock; well 12:16SV4 _readl, well 13:16SV4 _index1, well
14:16SV4 _read2) following the manufacturer’sinstructions. Sequences

ofall primers usedinlibrary preparation and sequencing are provided
inSupplementary Table 11.16S V4 sequencing of the bulk samples was
performed using similar protocol with scale-up reaction volumes in
96-well format. Moreover, SYBR Green I (final concentration: 0.2x;
Thermo Fisher Scientific, S7563) was added to the PCRreaction and a
quantitative 16S V4 amplification was performed and stopped during
the exponential phase (typically 13-17 cycles) and the reaction was
advancedto the final extension step.

16S rRNA amplicon analysis and ASV clustering

Raw sequencing reads of16S V4 amplicon were analyzed by USEARCH
v11.0.667 (ref. *¢). Specifically, paired-end reads were merged using
‘-fastq_mergepairs’ mode with the default setting. Merged reads were
then subjected to quality filtering using ‘-fastq_filter’ mode with the
option‘-fastq_maxee 1.0 -fastq_minlen 240’ to only keep reads with less
thanone expected error base and greater than 240 bp. Remaining reads
were deduplicated (-fastx_uniques) and clustered into ASVs (-unoise3)
at 100% identity, and merged reads were then searched against ASV
sequences (-otutab) to generate ASV count table. Taxonomy of ASVs
was assigned using Ribosomal Database Project classifier v2.13 trained
with16S rRNA training set 18 (ref. ). Relative abundance of ASVs in bulk
samplesis defined as reads count of ASVs normalized by total number
of mappedreads.

Isolate taxonomy identification and 16S phylogeny analysis
After ASV clustering, ASV count table was parsed to calculate the
following metrics for each isolate: total reads count, the ASVs
with the highest reads count and purity of that ASV. Isolates with
insufficient reads or poor purity (reads counts < 5 or purity < 0.5)
were filtered and the taxonomy of remaining isolates were defined
as the ASVs with the highest reads count. To construct the phylog-
eny of isolates, multisequence alignment was performed on ASV
sequences of the isolates using MUSCLE v5 (ref. *) and aligned ASV
sequences were subsequently analyzed by MEGA v11.0.11 (ref. *°) to
calculate neighbor-joining tree with the default setting for phylogeny
reconstruction.

Isolates whole-genome sequencing and reads processing

The same gDNA used for 16S V4 amplicon sequencing was subjected
to whole-genome sequencing for isolates. Paired-end libraries were
constructed following a published protocol of low-volume Nextera
library preparation®® and sequenced on Illumina Nextseq 500/550
platform (2 x 75 bp) and HiSeq platform (2 x 150 bp). Raw reads
were then processed by Cutadapt v2.1 with the following param-
eters: ‘--minimum-length 25:25-u10 -u-5-U10-U-5-q 15 --max-n O
--pair-filter=any’ to remove low-quality bases and Nextera adapt-
ers. Coverage was 1.42 + 2.86 million paired-end reads per isolate
and PacBio long-read sequencing was performed for some isolates
by SNPsaurus to improve the performance of de novo genome
assembling.

De novo genome assembling and SNP variation analysis

Illumina reads passing quality filtering and PacBio long reads were
assembled by Unicycler v0.4.4 (ref.”") with default setting to generate
draft genomes of isolates, and the quality and species-level taxonomy
of draft genomes were then assessed by QUAST v4.6.3 (ref.*?), CheckM
v1.0.13 (ref. *) and GTDB-Tk v0.2.2 (ref. °*). Among all 3,271 isolates
assemblies, 1,197 were defined as high-quality draft genomes (cover-
age >20x;N50 > 5,000 bp; completeness > 80%; contamination < 5%)
and used for downstream genomic variation and HGT analysis. To
identify strain-level genomic variation of gut microbiotaisolates within
and betweenindividuals, draft assemblies with the highest complete-
ness and N50 of each species were selected as the reference genomes
for reads alignment, and processed Illumina reads of isolates were
aligned to reference genomes of the same species by Bowtie2 v2.3.4
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(ref.>) in paired-end mode with ‘--very-sensitive’ setting. Resulting
reads alignments were then processed by SAMtools v1.9 and BCFtools
v1.9 (ref.>®) with --ploidy 1’ setting to call genomic variation (SNPs and
Indels). Resulting variations were then subjected to quality filtering to
identify ‘reliable’ genotypes (covered by >5reads; with >0.9 haploidy)
and only SNP variations with more than 90% ‘reliable’ genotypes across
allisolates were used for downstream analysis. To construct SNP-based
phylogeny, base profiles of isolates at SNP sites were concatenated
together and UPGMA tree was then calculated by MEGA v11.0.11 with
the default setting.

Genome-wide ANI calculation

To identify species isolated in our biobank that had not been cul-
tivated previously, the average nucleotide identity between draft
genomes obtained in this study and MAGs or isolates genomes from
publicly available databases were calculated by FastANI v1.0 (ref. "),
and genomes with >95% ANl were considered to be the same species.

HGT identification and annotation

Toidentity HGT occurring between species within Hl isolates, we com-
pared all genomes pairs of different species by BLASTN v2.7.1 (ref. °%)
with “-evalue 0.1 -perc_identity 99’ setting to systematically screen
blocks of genomic regions with high sequence identity. The P value
of candidate HGTs was then calculated based on the genome-wide
ANI between isolates and further adjusted by Benjamini-Hochberg
procedure. Blast hits with adjusted P value <1 x 107 and larger than
2,000 bpinlengthwere considered as HGT events betweenisolates of
different species. The frequency of HGTs between species was quanti-
fied using a previously published method*, defined as the number
of between-species genome pairs that share at least one HGT divided
by the total number of between-species genome pairs. To annotate
ARGs and secretion systems in HGT elements, sequences of HGT ele-
ments were annotated by Prokka v1.12 (ref. °°) in metagenome mode
and resulting CDS were searched against CARD database v3.1.4 (ref. *)
by BLASTPv2.7.1toidentify ARG hits with e value <1 x 1073, identity >20
and query coverage >50. Secretion systems were also predicted on CDS
of HGT elements by EffectiveDB®* with the default setting.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The sequencing data generated in this study have been submitted to
the NCBI BioProject database (http://www.ncbi.nlm.nih.gov/biopro-
ject/) under accession number PRJNA745993 (ref.©*). Other associated
data of the isolate collection, including morphological features and
raw images, can be accessed at http://microbial-culturomics.com.
Taxonomy of ASVs was assigned based on 16S rRNA training set 18
provided by Ribosomal Database Project. The annotation of ARG genes
and secretion systems in HGT elements was based on CARD database
v3.1.4 and EffectiveDB database, respectively.

Code availability
Scripts used to analyze plate images in this study can be accessed at
https://github.com/hym0405/CAMII ref. **.
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listed in Methods section where applicable. The sample sizes in this study are # of colonies imaged or # of isolates collected, and are based on
experimental yields. The specific # of colonies or isolates was chosen in this study to ensure they cover majority of morphological diversity or
phylogenic diversity of human gut microbiota.

Data exclusions  Data exclusion was based on sequencing coverage or genome quality to remove technical artifacts as described in the Methods section.

Replication In proof of concept, phenotype-guide strain isolation was performed for samples from 3 individuals as biological replicates (Figure 1F and
Figure S4). Bacterial genus prediction based on morphological features were bootstrapped for 20 times as technical replicates (Figure 3D&E).
The phenotype-guide strain isolation was also performed for the gut microbiota of remaining 17 individuals in a year with all isolation
experiments performing consistently well on these individuals based on the criterion of isolated ASVs (Figure S6).

Randomization  For allisolates generated in this study, individual of origins for isolated gut strains were assigned based on the defined identity of original
feces (Table S4) and covariate is not applicable here. For the simulation for in silico isolation and bootstrapping for morphology-based
taxonomy prediction, randomized initialization was applied.

Blinding The image data acquisition was performed by CAMII system automatically during the experiment, thus was blinded to researchers.
Automated isolation was performed by CAMII system and the researchers were blinded to isolation strategy in genomic DNA extraction and
library preparation as different groups are mixed in the same round of isolation. Blinding in analysis was not possible during experiments as
we are comparing isolates between individuals. All analyses of associated data were performed with the same parameters and criteria
described in Methods section.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies |:| ChiIP-seq
|:| Eukaryotic cell lines g |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms
Human research participants
|:| Clinical data

|:| Dual use research of concern
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Human research participants

Policy information about studies involving human research participants

Population characteristics 20 healthy human donors as indicated in the text, including 12 males and 8 females with ages mostly ranging from 20 to 50.

Recruitment 20 healthy volunteers were verbally recruited from Columbia University Medical Center. Exclusion criteria were antibiotic
exposure in the last 90 days or currently undergoing gastrointestinal disease (self-reported). The donors may be potentially
biased to ages of 20 to 50. We anticipated this didn't impact our overall result of isolates collection as well as colony
morphological analysis.

Ethics oversight This study was approved and conducted under Columbia University Medical Center Institutional Review Board protocol
AAAROQ753. Written informed consent was obtained from the subject in the study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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