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High-throughput microbial culturomics 
using automation and machine learning

Yiming Huang    1,4, Ravi U. Sheth    1,4, Shijie Zhao1, Lucas A. Cohen    1, 
Kendall Dabaghi1, Thomas Moody1, Yiwei Sun    2, Deirdre Ricaurte1, 
Miles Richardson    1, Florencia Velez-Cortes1, Tomasz Blazejewski1, 
Andrew Kaufman1, Carlotta Ronda    1 & Harris H. Wang    1,3 

Pure bacterial cultures remain essential for detailed experimental and 
mechanistic studies in microbiome research, and traditional methods 
to isolate individual bacteria from complex microbial ecosystems are 
labor-intensive, difficult-to-scale and lack phenotype–genotype integration. 
Here we describe an open-source high-throughput robotic strain isolation 
platform for the rapid generation of isolates on demand. We develop  
a machine learning approach that leverages colony morphology and 
genomic data to maximize the diversity of microbes isolated and enable 
targeted picking of specific genera. Application of this platform on fecal 
samples from 20 humans yields personalized gut microbiome biobanks 
totaling 26,997 isolates that represented >80% of all abundant taxa. Spatial 
analysis on >100,000 visually captured colonies reveals cogrowth patterns 
b et we en R um in oc oc ca ceae, B ac te ro id ac eae, C or io ba ct er iaceae and  
B if dobacteriaceae families that suggest important microbial interactions. 
Comparative analysis of 1,197 high-quality genomes from these biobanks 
shows interesting intra- and interpersonal strain evolution, selection and 
horizontal gene transfer. This culturomics framework should empower new 
research efforts to systematize the collection and quantitative analysis of 
imaging-based phenotypes with high-resolution genomics data for many 
emerging microbiome studies.

Metagenomics offers the ability to broadly survey the composition 
of diverse microbial ecosystems ranging from soil communities to 
the gut microbiome. Yet microbes need to be isolated and cultured 
to mechanistically dissect their functional roles in habitat and the 
myriad of interspecies processes that occur. Traditional cultivation  
methods relying on ‘brute force’ random colony picking are tedious and 
labor-intensive1–4. Serial dilution-based isolation methods using 96- or 
384 wells are resource-intensive and result in repeated isolation of the 
same dominant strains from the population5. Microfluidic systems 
enable growth in nanoliter reactors, but clonal isolates are difficult 

to extract6,7. Given that a typical microbiome can contain hundreds 
to thousands of unique species exhibiting a long-tailed abundance 
distribution8 (that is, few dominate while most are rare), generating 
comprehensive strain collections via systematic culturomics remains 
an important and outstanding challenge.

Microbes can be distinguished based on their diverse phenotypes, 
whether by their ability to grow in certain media or the metabolites 
they produce9–12. Growth-based selection can enhance the isolation 
of rare species, for example, with growth media containing different 
nutrients or antibiotics1,2,13. Mass spectrometry spectra can be used to 
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has an isolation throughput of 2,000 colonies per hour and can handle 
12,000 colonies per run, which is >20 times higher capacity and faster 
than manual colony isolation by a person. To ensure that our genomic 
analysis capacity matches the robotic isolation throughput, we also 
developed a low-cost, high-throughput sequencing pipeline that lever-
ages liquid handling automation to generate barcoded libraries for 16S 
rRNA sequencing or whole-genome sequencing (WGS; Methods). The 
cost per isolate in this pipeline is $0.45 for colony isolation and genomic 
DNA (gDNA) preparation, $0.46 for 16S rRNA sequencing and $6.37 for 
WGS at a coverage of >60× on an Illumina HiSeq platform, which is sub-
stantially cheaper than commercial services (Supplementary Table 2).

A key unique feature of the CAMII platform is the imaging system 
that collects and learns from morphological data of bacterial colonies 
(Fig. 1c). Specifically, transilluminated images, which show height, 
radius, and circularity of a colony and epi-illuminated images, which 
show color and complex morphological features such as wrinkling,  
are captured on CAMII to yield a multidimensional and quantifiable 
morphological dataset. We developed a custom colony analysis pipe-
line that segments colonies along diverse morphological features 
(Methods; Supplementary Table 3 and Supplementary Fig. 1). Area, 
perimeter and mean radius reflect colony size, while circularity, con-
vexity and inertia reveal colony shape. Pixel intensities and their vari-
ances in the red, green and blue (RGB) channels highlight any density 
gradations and colors across a colony (Fig. 1d). We next reasoned that 
morphologically distinct colonies are more likely to be phylogeneti-
cally diverse, which could be used to improve colony isolation. Thus, 
we developed an imaging-guided ‘smart picking’ strategy to isolate 
more diverse isolates by embedding colonies in a multidimensional 
Euclidean space based on captured features and selecting maximally 
distant points in this space representing the most morphologically 
distinct colonies (Supplementary Fig. 1; Methods). To further increase 
the diversity of bacteria that can be cultured and examined, CAMII also 
uses different antibiotic supplements to enrich the most unique and 
diverse subsets of microbes1,13 (Supplementary Fig. 2a,b). For instance, 
in a healthy human gut microbiome sample (H1t1), three antibiotics 
(ciprofloxacin, Cip; trimethoprim, Tmp; vancomycin, Van) with dif-
ferent mechanisms of action elicited the most distinct enrichment 
cultures (Fig. 1e and Supplementary Fig. 2c).

To systematically evaluate the capacity and fidelity of imaging- 
guided colony isolation, we applied CAMII to gut microbiome samples 
from three human volunteers (H1t4, H5t1 and H6t1; Supplementary 
Table 4). Morphological data from plated colonies were analyzed by 
principal component analysis (PCA) to assess the most informative 
visual features (Fig. 1c and Supplementary Fig. 1c; Methods). Interest-
ingly, colony density and size were the most dominant signatures  
(principal components 1 and 2, respectively) that together accounted 
for 72.0% of the morphological variance (Supplementary Fig. 3). We 
then used the CAMII robot to isolate 6,144 colonies, roughly half of 
them were randomly picked from mGAM plates and another half by 
using our imaging-guided ‘smart picking’ strategy and antibiotic 
selection. Isolates were grown in 384 wells and subjected to 16S rRNA 
sequencing for taxonomy identification. Unique 16S V4 sequences 
were then clustered into ASVs (100% identity cutoff) that provide 
approximate species-level identity21. Remarkably, colony isolation 
informed by phenotypic data yielded a substantially more diverse set 
of ASVs than compared to random isolation for all three microbiome 
samples (Fig. 1f). For example, to obtain 30 unique ASVs, we require 
only 85 ± 11 colonies to be isolated using our imaging selective strategy 
compared to 410 ± 218 colonies needed by random selection. Notably, 
this enhanced isolation efficiency was maintained throughout pick-
ing, implying that there is a sustained advantage in using our strategy 
at a range of desired isolation depth (Supplementary Fig. 4a), and 
the generated isolate collection better represented the underlying 
input microbial diversity and was substantially more even in composi-
tion as measured by Shannon’s equitability (Supplementary Fig. 4b). 

differentiate between species14,15, but the approach is low-throughput 
and requires manual processing. Imaging-activated cell sorting has 
been developed to isolate eukaryotic cells based on multidimensional 
images, but this method requires sophisticated instrumentation and 
has not been implemented for bacteria16. With recent advances in 
artificial intelligence (AI) and deep learning models trained to discern 
nuanced features in multidimensional imaging and biological data17, 
machine learning (ML) of combined phenotypic and genomic data 
streams is poised to transform next-generation microbial culturomics.

Here we describe an ML-guided robotic strain isolation and gen-
otyping platform that enables rapid and high-throughput genera-
tion of cultured biobanks on demand. This system uses an intelligent 
imaging-based algorithm to increase the taxonomic diversity of cul-
turomics compared to a random-picking method. We demonstrated 
the utility of this system by anaerobically generating personalized 
isolate biobanks for 20 human participants, yielding a total of 26,997 
isolates with 1,197 high-quality draft genomes, spanning 394 16S ampli-
con sequence variants (ASVs). Using the paired genomic and morpho-
logical information for each isolate, we trained an ML model that can 
predict taxonomic identity based only on colony morphology. Appli-
cation of this ML model led to an improvement in targeted isolation  
of microbes of interest. Large-scale imaging analysis of all colonies 
grown on agar plates revealed interesting species-specific growth 
patterns and interspecies interactions. Whole-genome analysis from 
personalized biobanks uncovered person-specific strain-level vari-
ation and signatures of horizontal gene transfer (HGT) within major 
gut phyla. We further developed an open-access web-based database 
(http://microbial-culturomics.com/) containing searchable genotypic, 
morphologic and phenotypic data of all isolates generated by auto-
mated culturomics as a unique and expanding community resource 
for the microbiome field.

Results
Data-driven culturomics using phenotypes and automation
Colony picking is a classic microbiology method for clonally isolating 
bacterial strains. Colony growth on plates depends on many factors, 
including the composition of the media (for example, available nutri-
ents), atmospheric conditions (for example, level of oxygenation), pres-
ence of inhibitory molecules (for example, antibiotics), pH, humidity and 
effects of other diffusible metabolites derived from nearby colonies18–20. 
Different colony morphologies are observed based on strain-specific 
physiological differences, influenced by cell shape, rigidity,  
motility and growth kinetics, as well as production of pigmented  
molecules or extracellular matrices and surfactants9–12. Although  
these colony traits are readily quantifiable, they are rarely documented 
during colony isolation. As a result, selective colony picking using visual 
features is generally qualitative and not standardized, and outcomes 
can vary substantially between experiments and experimentalists.  
To address these shortcomings, we devised a platform dubbed  
Culturomics by Automated Microbiome Imaging and Isolation (CAMII) 
to systematize culturomics with both morphologic and genotypic data 
for colony isolation and functional analysis.

The CAMII platform consists of four key elements (Fig. 1a) dis-
cussed as follows: (1) an imaging system that collects morphology 
data of colonies and an AI-guided colony selection algorithm, (2) an 
automated colony-picking robot for high-throughput isolation and 
arraying of isolates, (3) a cost-effective pipeline to rapidly generate 
genomic data for picked isolates and (4) a physical isolate biobank and 
digital database with searchable colony morphology, phenotype and 
genotype information. Thus, this end-to-end culturomics platform 
can produce isolate collections from diverse input microbiomes with 
minimized manual labor. The entire imaging and isolation system is 
built using off-the-shelf components housed in an anaerobic chamber  
that provides real-time control of temperature, humidity and  
oxygen levels (Fig. 1b and Supplementary Table 1). The CAMII robot 
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Phylogenetic analysis of isolates showed that CAMII-optimized colony 
picking substantially improved the diversity of obtained microbes 
(Supplementary Fig. 5). This advantage is particularly evident given 
that finding unique ASVs becomes asymptotically more difficult with an 

increasing number of isolates. Altogether, these results demonstrated 
our AI-guided data-driven isolation framework in the CAMII platform 
can substantially increase the efficiency of culturomics and lessened 
the labor to isolate especially rare species.
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Fig. 1 | A data-driven microbial isolation strategy using phenotypic and 
morphologic features. a, Framework of phenotype and morphology-driven 
strain isolation and data collection of the human gut microbiome. Human fecal 
samples were plated and cultured under different antibiotics selection and 
morphologically diverse colonies were then isolated, biobanked and analyzed 
by downstream sequencing. b, Setup of the automated anaerobic microbial 
isolation and cultivation system CAMII. c, Illustration of morphology-guided 
colony isolation on CAMII. Colonies grown on plates are imaged under trans- 
and epi-illumination and subjected to contour segmentation and morphologic 
features extraction. Data are analyzed by PCA to identify the set of most 
morphologically diverse colonies that are then isolated by an integrated colony 
picker. d, Illustration of diverse colony morphology on plates. Colony size 
and shape features were extracted from transilluminated images, and colony 

color features were extracted from epi-illuminated images. e, Fecal sample 
H1t1 were cultured with seven different antibiotics to evaluate their capacity 
to yield the most unique and diverse bacteria by 16S analysis at the family level. 
Ciprofloxacin, trimethoprim and vancomycin were selected for subsequent 
colony isolations. f, Number of unique ASVs obtained from phenotype-guided 
isolation compared to random isolation of three human fecal samples H1t4, H5t1 
and H6t1. Isolation was performed by CAMII; random isolation was performed 
on a random subset of all detected colonies on the plates, and phenotype-guided 
isolation was performed on morphology-selected colonies by the algorithm 
(Supplementary Fig. 1b). P value is calculated by a two-sided paired t-test on area 
under the curve. Ribbons on the curves represent the standard deviations of the 
number of obtained unique ASVs by the algorithm.
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Rapid generation of personalized gut isolate biobanks
While microbiomes from different people may share similar sets of bac-
terial species, the strains belonging to these species are highly unique 
to the individual and may co-colonize the same host for many years22,23. 
We sought to showcase the utility of CAMII to generate personalized 
gut isolate collections for 20 healthy people (Supplementary Table 4 
and Supplementary Fig. 6a,b). A total of 102,071 colonies were visually 
analyzed and 26,997 colonies were picked and taxonomically identified 
by 16S rRNA sequencing (Fig. 2a), yielding 394 unique ASVs that cover 

a broad diversity of healthy commensal gut microbiome (Fig. 2b,c and 
Supplementary Table 5).

To assess the comprehensiveness of this isolate collection, we 
calculated the abundance of isolated ASVs in the corresponding fecal 
samples by bulk 16S rRNA sequencing (Fig. 2d). Remarkably, for each 
individual, 80.9 ± 9.4% of the ASVs by abundance are represented at 
least once in the entire isolate collection. Isolates derived from each 
person constituted on average 45.6 ± 21.6% of the total bacterial ASV 
abundance within that individual (Fig. 2d). Moreover, comparison of 
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isolate collections and bulk feces samples showed most of the highly 
abundant and prevalent ASVs are isolated at least once in the collec-
tion (Supplementary Fig. 6c–e). Moreover, each personalized isolate 
collection mimics the bulk feces sample with comparable microbiome 
profiles and Shannon’s diversity index (Supplementary Fig. 6f,g).

In all, we demonstrated the use of CAMII to build a deep human 
gut isolate collection containing 26,997 isolates spanning 394 ASVs, 
with a rich set of linked morphologic, phenotypic, taxonomic and WGS 
data. To increase its utility for the research community, we further 
developed a searchable online resource (http://microbial-culturomics.
com) to house all CAMII-enabled biobank data including genomes, 
phenotypes and images. We envision this portal will facilitate further  
genotype-to-phenotype analyses and lead to more shared isolate  
collections from other environments.

Identifying undercultured ‘dark matter’ gut microbiome
Previous studies have observed that many microbes from different 
environments are difficult to culture in the laboratory24,25. We there-
fore leveraged our systematically generated isolate biobanks to assess 
the culturability of the human gut microbiome and to identify bac-
terial ASVs that remain recalcitrant to isolation in our experimental 
setting. Across all 20 personalized isolate collections, we determined 
whether abundant ASVs in the bulk fecal matter (average relative abun-
dance > 0.1%) are found in the biobank. Notably, a substantial fraction 
of the uncultured gut bacteria belonged to the Ruminococcaceae and 
Lachnospiraceae families (Fig. 2e and Supplementary Table 6), which 
has also been previously documented as ‘unculturable’24. For each 
ASV, we compared the number of isolates generated in our total isolate 
collection versus their average abundance in the bulk feces (Fig. 2f),  
which appeared to be positively correlated. Still, we identified a set of  
abundant yet difficult-to-culture bacteria, including Faecalibacterium  
ASV-58, Prevatella ASV-470 and ASV-324, Oscillibacter ASV-215 and 
Clostridium XlVa ASV-287 (Fig. 2g). Interestingly, Faecalibacterium 
ASV-58, from which we obtained one isolate and performed WGS, 
matched with >98% genome-wide average nucleotide identity 
(ANI) to the metagenome-assembled genome (MAG) of Candidatus  
cibiobacter qucibialis. This strain in our collection was previously 
reported as the most abundant uncultured species in human gut25 
and is highly depleted in inflammatory bowel disease (IBD) patients, 
as are other Faecalibacterium strains26.

We further compared isolates in our biobanks to existing data-
base1,3,22,25 by WGS and identified 11 additional species that had not been 
cultivated in any reference collections (BIO-ML, CGR and HMP) but 
are only associated with MAGs in the SGB collection (Supplementary 
Fig. 7 and Supplementary Table 7). For example, besides Faecalibacte-
rium ASV-58, we isolated another abundant species Faecalibacterium 
sp. ASV-76 that represents >3% relative abundance on average in the 
bulk fecal matter, which further expands the collection of culturable 
gut microbiomes. Together, these results highlight cultured isolates 
and the remaining missing diversity based on our current media and 
growth conditions, and offer directions to guide future culturomics 
efforts focused on these ‘dark matter’ gut microbiome (Supplemen-
tary Table 6).

Taxonomy prediction from morphology enables targeted 
isolation
Focused cultivation of bacteria of interest from a microbiome sample 
can be crucial for mechanistic studies. Unfortunately, we lack the capac-
ity to selectively culture most bacterial species in a specific manner. 
Consequently, picking a large number of colonies and relying on statis-
tical probability is the only practical solution for obtaining bacteria of 
interest. This strategy, however, is often too resource-consuming as it 
may require manually picking thousands of colonies. CAMII offers an 
ML-guided and automated colony selection method based on linking 
taxonomical identity to colony morphology and thus could in theory 

enhance targeted isolation. To test this, we systematically probed our 
deep gut isolate collection to analyze the relationship between mor-
phologic and genotypic data. Interestingly, colonies of different genera 
exhibited diverse morphological patterns (Fig. 3a,b). For example, colo-
nies of Dorea, Bacteroides and Collinsella are generally large and dense 
but show different circularities (Collinsella > Bacteroides > Dorea), 
reflecting differences in their growth characteristics. On the other 
hand, colonies of Faecalibacterium are smaller and fainter, in line with 
our earlier results of their poor culturability. Furthermore, colony 
morphologies are significantly clustered according to their phylogeny 
(P = 0.008 by PERMANOVA test in Fig. 3c). For instance, most genera 
of Clostridia are closer to each other by morphology-based ordination 
(Fig. 3c). Therefore, colony morphologies may embed a substantial 
amount of information that could be linked to taxonomic identities.

We assessed whether taxonomic identity of colonies could be 
uniquely predicted by only incorporating their morphologic informa-
tion on plates. We trained a random forest classification model using 
morphology and taxonomy data from randomly selected subsets of 
isolates (70% of the total; Methods). The model performance was evalu-
ated on the remaining 30% of isolates. Remarkably, our model achieved 
~70% precision for most genera that had more than 100 isolates in the 
training dataset (Fig. 3d). The recall rate at the genus level varied more 
widely, highlighting open opportunities to use more sophisticated 
models to learn additional unique colony features27–29. Some genera 
such as Eggerthella had high precision and recall, indicating that highly 
conserved and unique colony morphologies could be specifically  
leveraged for taxonomic predictions. When analyzing isolates from the 
same ASV, we found that colony morphology was highly conserved for 
isolates within the same person but was much more variable between 
isolates from different people (Supplementary Fig. 8). Given that differ-
ent people usually carry distinct strains of the same species, our results 
suggested a high degree of strain-level variation in colony morphology.

To assess whether AI-informed colony features can improve tar-
geted microbe isolation, we next trained random forest models on our 
biobank isolates data from three different people separately (H12, H13 
and H14). The models were used to predict colonies of Bifidobacterium, 
Parabacteroides and Eggerthella from new plates derived from the same 
fecal samples, and the colonies were then isolated by CAMII and 16S 
rRNA sequenced to confirm taxonomic identity (Methods). Notably, 
morphology-guided picking substantially improved the isolation 
efficiency for these targeted genera by up to eightfold on average  
(Fig. 3e), largely increasing the precision of picking and mitigat-
ing the need to screen many colonies to find the desired microbes. 
These results emphasize the value of our biobank datasets that link  
phenotype to genotype and demonstrate taxonomic predictions  
from visual colony features alone, which can greatly enhance targeted 
microbial isolation.

Interbacterial growth associations between gut microbiota
Bacterial colonies can influence the growth of their neighbors through 
species interactions such as competing for nutrients or cross-feeding 
essential metabolites. Previous studies suggest that neighboring cells 
can critically affect the size of colonies in a predictable manner19. 
Because CAMII can track the kinetic growth of colonies continuously, 
we systematically probed the cogrowth associations between gut 
isolates on agar plates. A fecal sample (H1t5; Supplementary Table 4)  
was plated and imaged daily, and all colonies were subsequently  
isolated on day 6 and their taxonomic identities were determined with 
16S sequencing (Fig. 4a). For each ASV, the cumulative area of colonies 
on agar plates correlated with their abundances in the original fecal 
sample (Supplementary Fig. 9), indicating that our in vitro conditions 
generally fostered growth to the same degree as in the gut. Interest-
ingly, colonies belonging to the Faecalibacterium genus exhibited 
slower initial growth and only began to emerge in the presence of other 
nearby growing colonies (Fig. 4b; Methods). This observation suggests 
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that commensal or mutualistic interactions may be at play between 
Faecalibacterium and other species.

To more systematically study species interactions enabled by 
CAMII, we analyzed the colony morphology, taxonomic identity and 
colony neighborhood data together. We aggregated morphology 
data and physical coordinates from 102,071 visually captured colonies 
(26,997 isolated) and assessed whether a colony’s growth is affected by 
neighboring cells. Surprisingly, we observed a number of interesting 
cogrowth patterns that may reflect interspecies interactions (Supple-
mentary Table 8). For example, the colony size of Phocaeicola vulgatus 
ASV-6 is negatively correlated with the number of neighboring cells, 
consistent with a scenario that there are general negative interactions 
mediated by competition or antagonism between P. vulgatus and other 
bacteria in the gut30 (Fig. 4c). On the other hand, Faecalibacterium 
prausnitzii ASV-39, one of the species associated with slower initial 
growth in colony kinetics (Fig. 4b), grew larger colonies with more 
neighbors reflective of a positive species interaction (Fig. 4c).

We next incorporated taxonomic information of nearby  
colonies and looked at how the colony size of a specific genus could 
be affected by other genera. Briefly, for each pair of genera, we com-
pared the colony sizes of one genus with the other genus present in the  
neighborhood and without any colonies present (Methods). Remark-
ably, we identified isolates from two genera, Faecalibacterium  
and Clostridium IV, that grow into larger sizes when the isolates  
were close to Bifidobacterium, Phocaeicola and Bacteroides (Fig. 4d). 
Faecalibacterium and Clostridium IV have been reported to be major 
butyrate-producing bacteria in the gut and could benefit from cocul-
ture growth with Bifidobacterium and Bacteroides species31–33, which 
is consistent with our findings. On the other hand, we observed that 
Phocaeicola isolates are smaller with Faecalibacterium isolates as  

neighbors (Fig. 4d), indicating that the cogrowth interaction might 
be beneficial to only one side. Furthermore, consistent with our  
previous correlation analysis that examined neighboring isolate  
numbers without the consideration of neighbors’ identity, we observed 
that the growth of Phocaeicola and Bacteroides could be inhibited by 
multiple other genera, suggesting further investigations to better 
understand the underlying mechanism of these positive and nega-
tive interactions between gut microbiota. Together, our results high-
light that CAMII can reveal colony cogrowth patterns governed by 
inter species interactions, which may help identify growth-promoting 
microbes and their diffusible metabolites that stimulate in vitro growth 
of fastidious species.

Intra- and interpersonal genomic diversity of gut strains
Mapping the strain-level genome-wide diversity of gut bacteria within 
a person is important for understanding the dynamics of gut coloni-
zation and the drivers of bacterial selection and adaptation specific 
to each human host1,2,34. A key advantage of the CAMII system is the  
ability to isolate and perform WGS for a large number of isolates to help 
investigate inter- and intrapersonal genomic variations. As such, we 
selected isolates covering the most unique and prevalent ASVs from our 
20-person microbiome biobank and performed WGS that yielded 1,197 
high-quality draft genomes (Supplementary Fig. 10 and Supplementary 
Table 9). Genome assemblies were further analyzed to determine the 
accurate species-level taxonomy of isolates (Methods).

We first explored the interpersonal strain-level genomic varia-
tions across our isolate collection (Methods). Consistent with previ-
ous reports1,35, most isolates within the same individuals had very few 
genomic variations (that is, less than 102 SNPs) while isolates between 
people differed by 103–105 genome-wide SNPs (Fig. 5a). Interestingly, 
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Fig. 3 | Using colony morphology to predict taxonomic identity enhances 
targeted isolation. a, Heatmap of average z scores of morphological 
features across different bacterial genera. Different genera exhibiting diverse 
morphological patterns were classified into different groups by hierarchical 
clustering and the colored dot on the right represents their class-level taxonomy. 
b, Examples of colony images. Transilluminated images are on the left side and 
epi-illuminated images are on the right side. c, PCA ordination of genera based 
on their colony morphological features. Colors indicate class-level taxonomy. 
d, Performance of bacterial genus prediction based on morphological features 
by a random forest classifier. The numbers in brackets represent the number 

of isolates for each genus. Model training and evaluation were bootstrapped 
20 times and the box plots show the variance of performance (n = 20). Blue line 
represents the performance of null model. Definition of box-plot elements—
center line, median; box limits, upper and lower 25th quartiles; whiskers, 1.5× 
interquartile range. e, Performance of model-based targeted isolation. Bars 
represent the mean of prediction precision by individual-specific models that 
were bootstrapped 20 times and error bars represent the standard deviations. 
P values were calculated by two-sided Student’s t-test on precisions from n = 20 
randomly initialized model bootstrapping.
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some phylogenetically distinct isolates (that is, more than 104 SNPs) 
of the same species were observed to coexist within the same person  
(Fig. 5a). For instance, two distinct strains of P. vulgatus were isolated 
from the H4 individual and two distinct strains of B. uniformis were 
found in the H2 individual (Supplementary Fig. 11).

We next sought to assess the strain-level diversity within a single 
person by analyzing 408 isolate genomes derived from the H1 indi-
vidual (Supplementary Fig. 10; Methods). Because abundant species in 
the gut are expected to undergo more cell divisions, we hypothesized 
that they may accumulate more SNPs across their genomes, assum-
ing approximately the same duration of gut colonization. Indeed, the 
number of genome-wide SNPs within each taxon is generally correlated 
with its abundance in the original microbiome (Fig. 5b). B. fragilis 
shows a higher proportion (56.0%) of leaf SNPs (that is, present in only 
one genotype) while other species show much lower proportions, 
including P. goldsteinii (20.5%), B. stercoris (22.4%) and B. xylanisolvens 
(25.6%), which suggests differential population bottlenecks and selec-
tive sweeps at the species level. At the gene level, we also observed 
evidence of convergent adaptive evolution. For instance, between 
different P. dorei isolate lineages, we identified two coding variants in 
gene TodS (Supplementary Fig. 12), which encodes a two-component 
kinase sensor regulating toluene metabolism in bacteria36. Toluene 
and other aromatic hydrocarbons are found in foods and are also used 

as industrial feedstocks that could contaminate foods and thus drive 
evolution in the gut37.

Another major driver of within-person gut microbiome evolution 
is HGT. Accordingly, we used all whole-genome sequenced H1 isolates 
to reconstruct an HGT network of shared DNA elements >2 kb in length 
(Methods). Consistent with recent reports38,39, we observed that HGT 
events were strongly linked to the phylogeny of the isolates, that is, 
most HGT events occurred within the same phyla but were also quite 
prevalent across different families and between distinct species (Fig. 5c  
and Supplementary Table 10). Interestingly, we observed that HGTs 
were predominantly enriched between isolates with the same Gram 
staining, with Gram-negative species showing more prevalent HGTs 
than Gram-positive species (P = 0.0005 by Pearson’s chi-squared test). 
This result is consistent with recent finding39 and suggests that differ-
ent cell wall structures may play an important role in HGTs. Notably, 
HGTs between Gram-positive and -negative species were also observed 
in our dataset, inspiring future studies to study the effect of cell wall 
structures on HGTs and engineer these HGT elements into a micro-
biome editing tool. Next, to examine whether these HGTs occurred 
recently, we calculated the mean HGT frequency between all species 
pairs (Methods). We hypothesized that if HGTs occurred recently 
between two species, they would be only associated with a small pro-
portion of isolates, resulting in a low frequency between species, while 
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Fig. 4 | Mapping interaction between gut microbiota by colony morphology 
analysis. a, Images of an example plate during 6 d of growth and colony identities 
on the plate by 16S sequencing. b, Proportion of detectable colonies at different 
time points compared to day 6 for each genus. Colors indicate the family-level 
taxonomy. c, Correlation of colony size and number of nearby colonies for two 
representative ASVs. A full list of correlations is provided in Supplementary  
Table 8. P values are calculated by one-sided Mann–Whitney U test on area 
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colonies (n = 101 versus 82 for ASV-6 and 17 versus 9 for ASV-39). Definition 
of box-plot elements: center line: median; box limits: upper and lower 25th 
quartiles; whiskers: 1.5× interquartile range. d, Pairwise growth promoting and 
inhibiting networks between genera. Directional growth-promoting effects are 
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if HGTs occurred earlier and provided growth benefits, they would be 
enriched and vertically inherited by later generation, resulting in a high 
frequency. Interestingly, we found most HGT elements were frequently 
present across isolates (71.5% HGTs with >50% frequency), especially 
for ones within Bacteroidaceae species (Fig. 5c), suggesting that they 
occurred in the distant past and were enriched under strong selection 
within the gut environment.

Given the high prevalence and frequency of within-individual HGT, 
we next annotated the protein-coding sequences of the most wide-
spread HGT elements to probe their potential functions (Methods).  
Interestingly, we identified multiple antibiotic resistance genes 
(ARGs) with different mechanisms of action as well as secretion system  
genes (Supplementary Fig. 13). For example, the top four most wide-
spread HGT sequences are found surprisingly in at least 13 different 
species of Bacteroidaceae, Porphyromonadaceae, Odoribacteraceae, 
and Rikenellaceae and contained multiple ARGs including ribosomal  
protectors and antibiotic efflux pumps, as well as type III and type IV 
secretion systems. While ARGs and secretion systems shared through 
HGT may confer clear evolutionary advantages40,41, there were numer-
ous widespread elements across different species with genes of 
unknown function (Supplementary Fig. 13), hinting at unexplored 
mechanisms that drive their long-term persistence in the gut. Taken 
together, these results highlight that isolates within and across people 
have genomic diversity that can be systematically characterized using 
CAMII-enabled deep strain biobanking and genomic analysis to study 
person-specific gut microbiome colonization, adaptation and ecology.

Discussion
Strain isolation from the gut microbiome has historically been per-
formed in an ad hoc manner where important phenotypic features are 
inadequately captured and poorly documented alongside genomic 
data. Here we described the CAMII platform to industrialize the gene-
ration of isolate biobanks by leveraging automation, machine vision, 
supervised learning and genomics. When combined with low-cost 16S 
and whole-genome sequencing, the systematically generated phe-
notypic and genomic data produced from the pipeline forms a rich 

resource to study microbial colony morphology, diversity and evolu-
tion. Using the gut microbiome as a showcase example, CAMII-enabled 
isolation yielded extensive isolate biobanks from 20 healthy individuals 
that in aggregate covered >80% of all microbiota by abundance pre-
sent. This isolate collection covers a majority of microbial diversity in 
the healthy gut and is one of the most extensive personalized isolate 
biobanks described to date. Using this resource, we demonstrated that 
quantitative analysis of colony morphologies can predict taxonomy, 
enhance the isolation of targeted genera and reveal potential interac-
tions between microbes. Systematic analysis of genomic differences 
between isolates within and across people revealed interesting patterns 
of population selection, adaptation and HGT.

The majority of the data presented here relied on a common 
mGAM-rich media for strain isolation and characterization in the con-
text of the human gut microbiome. Exploration of alternative media 
formulations, other micronutrients and macronutrients, and host or 
environmentally associated biochemical perturbations (for example, 
bile acids and xenobiotic compounds) could yield morphologic and 
growth profile changes that inform unexplored physiologies and char-
acteristics of the gut microbiome. The interspecies interactions derived 
from CAMII datasets could be further used to systematically map out 
the drivers of microbiome dynamics. We envision that these inter-
actions could facilitate cultivation of recalcitrant ‘dark matter’ micro-
biome by helping to identify unknown microbially-derived molecules 
that promote cooperative growth observed in this and other studies.

The CAMII system uses commercially available off-the-shelf com-
ponents and open-source code that can be readily replicated by other 
researchers (see Supplementary Table 1 for list of components). We 
envision that the searchable online portal will facilitate sharing of 
standardized phenotypic and genomic data, which is poised to grow 
over time. The CAMII hardware could be further expanded to integrate 
mass spectrometry measurements to gain additional colony character-
istic profiles that can improve species and metabolite identification. 
Onboard automated microscopy could further introduce orthogonal 
data streams to visualize microbial cells at micrometer resolution 
across different spectral channels. Improved machine vision and  
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ML algorithms could yield even better strain predictions and enhance 
isolation performance.

Because individual strains are the unit of action within a complex 
community, more complete strain collections are needed. Such com-
prehensive biobanks can be used to recreate a more holistic context 
that takes into account the composition, interspecies interactions and 
metabolic capacity of the entire community, which will improve studies 
of microbiome function, dynamics and stability. Beyond the human 
gut, CAMII can be useful for other microbiomes such as those from soil, 
aquatic or agricultural settings, including further isolation and analysis 
of phages, fungi and protozoa. The robotic automation system can also 
help generate systematic strain libraries such as arrayed transposon 
insertion knock-out collections42 or functional genomics expression 
libraries43 as well as improve screening for tractable microbial chassis 
for genetic engineering44.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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Methods
Ethical review
This study was approved and conducted under Columbia University 
Medical Center Institutional Review Board protocol AAAR0753. Written  
informed consent was obtained from participants in the study.

Fecal sample collection and storage
Fresh fecal samples were collected from 20 healthy human donors and 
processed within 3 h of defecation. Briefly, feces were collected using 
the Commode Specimen Collection System (Fisher, 02-544-208). An 
inverted sterile 200-µl pipette tip (Rainin, RT-L200F) was used to core 
out a small sample from the stool specimen, which was then immedi-
ately placed in a sterile cryovial (Fisher, NC9347001). The collected 
fecal samples were then transferred to an anaerobic chamber (Coy 
Laboratory) and homogenized in 5 ml of prereduced PBS by thorough 
vortexing. Homogenized samples were further passed through a 40-µ 
filter (Fisher, 22363547) to remove dietary debris, aliquoted into mul-
tiple cryovials with glycerol (20% final concentration) and transferred 
to a −80 °C freezer for long-term storage.

Plate preparation and bacterial culture
All gut microbiota were grown in Gifu Anaerobic Medium Broth, Modified  
(mGAM; HyServe, 05433) under anaerobic conditions (5% H2, 10% CO2 
and 85% N2) in an anaerobic chamber. Briefly, 1.5% agar plates (Thermo 
Fisher Scientific, 242811) with mGAM media were made using a peristal-
tic pump (New Era Pump Systems NE-9000) and labeled with unique 
barcodes. For plates supplemented with ciprofloxacin (10 µg ml−1), 
trimethoprim (50 µg ml−1) or vancomycin (50 µg ml−1), antibiotics were 
added during plate preparation. All plates were then transferred to the 
anaerobic chamber and prereduced for ~24 h before plating. Frozen 
fecal samples were thawed in the anaerobic chamber and diluted to 103 
CFU per ml for each culturing condition. Optimal dilutions were deter-
mined by sample-specific serial dilution experiments. Two hundred 
microliters of diluted fecal samples was then dispensed onto the plate 
and spread using sterile glass beads. Plates were sealed in Ziploc bags 
to reduce desiccation and incubated at 37 °C for 5 d of colony growth.

Strain imaging and isolation
Strain imaging and isolation was performed using a custom automated 
imaging and colony-picking system (CAMII). After 5 d of growth, agar 
plates were imaged automatically on the CAMII system (Fig. 1c). Briefly, 
plates were first placed on a carrousel stacker. A robotic arm gripper 
carried individual plates past a barcode scanner to an illuminated 
imaging platform on the colony picker where they were imaged under 
two lighting conditions (epi-illumination and transillumination) by the 
Hudson RapidPick control software. The plate labels are linked to the 
captured images and imaged plates were automatically restacked by 
the robotic arm. Following completion of the imaging process, plates 
were sealed in Ziploc bags to avoid desiccation and a custom script 
was used to segment different colonies and identify morphologically 
unique colonies for subsequent picking based on plate images (Supple-
mentary Fig. 1a). Morphologic features include area, perimeter, mean 
radius, circularity, convexity, inertia and mean and variances along gray 
channel (transilluminated images) and RGB channels (epi-illuminated 
images). Raw images of all colonies on the plate are also collected.

For random picking performed in this study, a random subset of 
a given number of colonies was generated from all detected colonies 
by the script and the automatic isolation was performed on these 
colonies. For phenotype-guided picking, all detected colonies were 
first subjected to optimized selection based on their morphology, and 
a subset of a given number of colonies with maximized morphological 
diversity was isolated by CAMII. Detailed algorithm of optimized colony 
selection can be found in Supplementary Fig. 1b, and scripts used to 
analyze plate images and colony morphologies can be accessed at 
https://github.com/hym0405/CAMII.

After analyzing plate images and generating a list of colonies to 
pick, a similar robotic protocol was executed to isolate these colonies. 
Firstly, plates were restacked for picking and a multichannel media 
dispenser was used to dispense 50 µl of mGAM liquid media into each 
well of two barcoded sterile 384-well optical plates (Thermo Fisher  
Scientific, 12-566-2; duplicate ‘A’ and ‘B’), which were then moved to the 
colony picker. Next, an agar plate was transferred to the colony picker 
and heat-sterilized needles picked individual colonies into the duplicate 
optical plates. Plates were automatically switched out when all targeted 
colonies were picked (agar plate) or all wells were inoculated (optical  
plate). After colony picking, inoculated optical plates were trans-
ferred to a plate sealer (Brandel, 9795), sealed and restacked. Optical  
plates were then incubated at 37 °C for ~5 d for bacteria culturing. 
After bacterial growth, ‘A’ plates were subjected to downstream gDNA 
extraction and 30 µl of 40% glycerol was added to each well of ‘B’ plates, 
which were transferred to −80 °C for long-term storage.

Colony morphology analysis
To achieve morphology-guide colony selection, colony morphological 
features extracted in raw image processing were centralized and scaled 
to unit variance and then embedded by PCA. An optimized colony selec-
tion algorithm was further applied to embedded features to search a set 
of colonies with most morphological diversity (Supplementary Fig. 1b).

To evaluate how different ASVs respond to nearby colonies (Fig. 4c),  
number of nearby colonies were calculated for isolates on plates, and 
‘nearby colony’ pair was defined as two colonies with distance between 
their X–Y coordinates shorter than 30 pixels plus the sum of their 
radii. To avoid potential impact of antibiotics on colony morphology, 
only colonies grown on mGAM-only plates were used for morphology 
analysis.

To evaluate how the growth of a specific genus could be affected 
by other genera (Fig. 4d), we first identified ‘nearby colony’ pairs as 
described above, and the growth impact of genus-A on genus-B is quan-
tified by comparing the colony sizes of genus-B with genus-A present 
in the neighborhood, that is, as nearby colony, to the colony sizes of 
genus-B without any nearby colonies: the effect size was defined as the 
fold-change of average colony size with genus-A present to average 
colony size without any nearby colonies, and the P values were calcu-
lated by Mann–Whitney U test on the size distributions between with 
genus-A present in the neighborhood and without any nearby colonies, 
and false discovery rate (FDR) correction was performed using Bonfer-
roni–Holm methods. To avoid potential impact of antibiotics on colony 
morphology, only colonies grown on mGAM-only plates were used for 
morphology analysis.

Taxonomy prediction and targeted isolation
To test whether colony morphology on plates could help predict taxo-
nomic identity, colonies of data-rich genus (>100 isolates across all 20 
individuals) were subjected to model training and testing. Considering 
the potential impact of antibiotics perturbation and neighbor colonies, 
a multilabel random forest model was trained on 70% of isolates, which 
was randomly sampled using 14 colony morphological features, antibi-
otics condition and number of nearby colonies, and the performance 
(precision and recall) of the model was evaluated on the remaining 30% 
of isolates. The procedure of model training and evaluating was boot-
strapped 20 times with different randomization settings to minimize 
bias, and the background performance of the model was calculated by 
null model (prediction based on the number of isolates). To perform 
targeted microbial isolation, a multilabel random forest model was 
trained on colonies of data-rich genus (>15 isolates from the same 
individual) from individuals H12, H13 and H14 separately as described 
above. The same fecal samples were then plated out and the model 
was applied to the new plates after bacterial growth to screen all colo-
nies on plates and predict colonies of targeted genus-level taxonomy. 
All colonies of the plates were then isolated on CAMII and subjected 
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to 16S V4 sequencing to identify their taxonomy and evaluate the  
performance of targeted isolation.

Daily kinetic growth analysis of colonies on plate
To monitor the growth kinetics on a daily basis, fecal sample H1t5 was 
plated out on mGAM-only plates and the plates were imaged every day 
during 6 d of growth. Colony detection and segmentation were per-
formed on images, and colony morphology features on different days 
were matched based on their X–Y coordinates (Fig. 4a). All colonies on 
plates were then isolated on CAMII on day 6 and subjected to taxonomy 
identification by 16S rRNA sequencing. To quantify differential initial 
growth of genera, the number of detectable colonies of each genus on 
each day (tracked by x–y coordinates) was normalized to their total 
number of colonies on day 6 to calculate the proportion of detectable 
colonies (Fig. 4b) at each day.

gDNA extraction
gDNA of picked isolates were extracted in 384-well format using a silica 
bead beating-based protocol adapted from a prior study45. Firstly, 40 µl 
0.1 mm Zirconia Silica beads (Biospec, 11079101Z) and 120 µl lysis solu-
tion (50 mM Tris–HCl, pH 7.5 and 0.2 mM EDTA) were added to each well 
of 384-well deep-well plates (Thermo Fisher Scientific, 07-202-505).  
Next, 40 µl culture solutions of isolates were added to each well and the 
plates were centrifuged for 1 min at 4,500g and affixed with a sealing 
mat (Axygen, AM-384-DW-SQ). To avoid overheating during bead beat-
ing, the plates were vortexed for 5 s and incubated at −20 °C for 10 min 
before beating. Then, plates were fixed on a bead beater (Biospec, 1001) 
and subjected to bead beating for 5 min, followed by a 10-min cooling 
period. The bead beating cycle was repeated once and plates were 
centrifuged at 4,500g for 5 min to spin down cell debris. Next, 10 µl 
cell lysate was transferred to a 384-well PCR plate (Bio-Rad, HSP3801) 
and 2 µl proteinase K solution (50 mM Tris–HCl, pH 7.5 and 1 µg µl−1 
proteinase K (Lucigen, MPRK092)) was added using a Formulatrix 
Mantis. Finally, cell lysate was subjected to proteinase K digestion on 
a thermal cycler (65 °C 30 min, 95 °C 30 min, 4 °C infinite) and trans-
ferred to −20 °C for long-term storage. gDNA extraction for bulk feces 
samples was performed using the same protocol with scale-up reaction 
volumes in 96-well format.

16S rRNA amplicon sequencing
16S sequencing of the V4 region for isolates taxonomy identification 
was performed in 384-well format using a set of dual-indexing sequenc-
ing primers. Briefly, barcoded 16S V4 amplicon primers were designed 
based on universal 16S V4 primers and synthesized by Integrated DNA 
Technologies. Next, 1 µl of each unique combination of barcoded 
forward primer 16SV4f_5xx and reverse primer 16SV4r_7xx were trans-
ferred to a 384-well PCR plate using Labcyte Echo to make unique 
dual-indexed primer plates. Then, ~130 nl of gDNA was transferred to 
a primer plate by a 384-well pin replicator (Scinomix, SCI-6010.OS) 
and 2 µl NEBNext Q5 PCR master mix (NEB, M0543L) was added to each 
well using Formulatrix Mantis. The samples were then subjected to 16S 
V4 amplification on a thermal cycler (98 °C 30 s, 40 cycles: 98 °C 10 s, 
55 °C 20 s, 65 °C 60 s; 65 °C 5 min; 4 °C infinite). The resulting amplicon 
libraries were manually pooled and subjected to gel electrophoresis 
on E-Gel EX Agarose Gels, 2% (Thermo Fisher Scientific, G402002). 
Expected DNA bands (~390 bp) were excised from gel and extracted by 
Wizard SV Gel and PCR Cleanup System (Promega, A9282) following 
the manufacturer’s instructions to remove PCR primers and adapter 
dimers. Gel-purified libraries were quantified by Qubit dsDNA HS assay 
(Thermo Fisher Scientific, Q32851) and sequenced on Illumina MiSeq 
platform (reagent kits: v2 300-cycles, paired-end mode) at 8 pM load-
ing concentration with 20% PhiX spike-in (Illumina, FC-110-3001) along 
with custom sequencing primers spiked into Miseq reagent cartridge 
(6 µl of 100 µM stock; well 12: 16SV4_read1, well 13: 16SV4_index1, well 
14: 16SV4_read2) following the manufacturer’s instructions. Sequences 

of all primers used in library preparation and sequencing are provided 
in Supplementary Table 11. 16S V4 sequencing of the bulk samples was 
performed using similar protocol with scale-up reaction volumes in 
96-well format. Moreover, SYBR Green I (final concentration: 0.2×; 
Thermo Fisher Scientific, S7563) was added to the PCR reaction and a 
quantitative 16S V4 amplification was performed and stopped during 
the exponential phase (typically 13–17 cycles) and the reaction was 
advanced to the final extension step.

16S rRNA amplicon analysis and ASV clustering
Raw sequencing reads of 16S V4 amplicon were analyzed by USEARCH 
v11.0.667 (ref. 46). Specifically, paired-end reads were merged using 
‘-fastq_mergepairs’ mode with the default setting. Merged reads were 
then subjected to quality filtering using ‘-fastq_filter’ mode with the 
option ‘-fastq_maxee 1.0 -fastq_minlen 240’ to only keep reads with less 
than one expected error base and greater than 240 bp. Remaining reads 
were deduplicated (-fastx_uniques) and clustered into ASVs (-unoise3) 
at 100% identity, and merged reads were then searched against ASV 
sequences (-otutab) to generate ASV count table. Taxonomy of ASVs 
was assigned using Ribosomal Database Project classifier v2.13 trained 
with 16S rRNA training set 18 (ref. 47). Relative abundance of ASVs in bulk 
samples is defined as reads count of ASVs normalized by total number 
of mapped reads.

Isolate taxonomy identification and 16S phylogeny analysis
After ASV clustering, ASV count table was parsed to calculate the  
following metrics for each isolate: total reads count, the ASVs  
with the highest reads count and purity of that ASV. Isolates with  
insufficient reads or poor purity (reads counts < 5 or purity < 0.5) 
were filtered and the taxonomy of remaining isolates were defined 
as the ASVs with the highest reads count. To construct the phylog-
eny of isolates, multisequence alignment was performed on ASV 
sequences of the isolates using MUSCLE v5 (ref. 48) and aligned ASV 
sequences were subsequently analyzed by MEGA v11.0.11 (ref. 49) to 
calculate neighbor-joining tree with the default setting for phylogeny 
reconstruction.

Isolates whole-genome sequencing and reads processing
The same gDNA used for 16S V4 amplicon sequencing was subjected 
to whole-genome sequencing for isolates. Paired-end libraries were 
constructed following a published protocol of low-volume Nextera 
library preparation50 and sequenced on Illumina Nextseq 500/550 
platform (2 × 75 bp) and HiSeq platform (2 × 150 bp). Raw reads 
were then processed by Cutadapt v2.1 with the following param-
eters: ‘--minimum-length 25:25 -u 10 -u -5 -U 10 -U -5 -q 15 --max-n 0 
--pair-filter=any’ to remove low-quality bases and Nextera adapt-
ers. Coverage was 1.42 ± 2.86 million paired-end reads per isolate  
and PacBio long-read sequencing was performed for some isolates  
by SNPsaurus to improve the performance of de novo genome 
assembling.

De novo genome assembling and SNP variation analysis
Illumina reads passing quality filtering and PacBio long reads were 
assembled by Unicycler v0.4.4 (ref. 51) with default setting to generate 
draft genomes of isolates, and the quality and species-level taxonomy 
of draft genomes were then assessed by QUAST v4.6.3 (ref. 52), CheckM 
v1.0.13 (ref. 53) and GTDB-Tk v0.2.2 (ref. 54). Among all 3,271 isolates 
assemblies, 1,197 were defined as high-quality draft genomes (cover-
age > 20×; N50 > 5,000 bp; completeness > 80%; contamination < 5%) 
and used for downstream genomic variation and HGT analysis. To 
identify strain-level genomic variation of gut microbiota isolates within 
and between individuals, draft assemblies with the highest complete-
ness and N50 of each species were selected as the reference genomes 
for reads alignment, and processed Illumina reads of isolates were 
aligned to reference genomes of the same species by Bowtie2 v2.3.4 
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(ref. 55) in paired-end mode with ‘--very-sensitive’ setting. Resulting 
reads alignments were then processed by SAMtools v1.9 and BCFtools 
v1.9 (ref. 56) with ‘--ploidy 1’ setting to call genomic variation (SNPs and 
Indels). Resulting variations were then subjected to quality filtering to 
identify ‘reliable’ genotypes (covered by ≥5 reads; with ≥0.9 haploidy) 
and only SNP variations with more than 90% ‘reliable’ genotypes across 
all isolates were used for downstream analysis. To construct SNP-based 
phylogeny, base profiles of isolates at SNP sites were concatenated 
together and UPGMA tree was then calculated by MEGA v11.0.11 with 
the default setting.

Genome-wide ANI calculation
To identify species isolated in our biobank that had not been cul-
tivated previously, the average nucleotide identity between draft 
genomes obtained in this study and MAGs or isolates genomes from 
publicly available databases were calculated by FastANI v1.0 (ref. 57), 
and genomes with >95% ANI were considered to be the same species.

HGT identification and annotation
To identity HGT occurring between species within H1 isolates, we com-
pared all genomes pairs of different species by BLASTN v2.7.1 (ref. 58)  
with ‘-evalue 0.1 -perc_identity 99’ setting to systematically screen 
blocks of genomic regions with high sequence identity. The P value 
of candidate HGTs was then calculated based on the genome-wide 
ANI between isolates and further adjusted by Benjamini–Hochberg 
procedure. Blast hits with adjusted P value <1 × 10−5 and larger than 
2,000 bp in length were considered as HGT events between isolates of 
different species. The frequency of HGTs between species was quanti-
fied using a previously published method39,59, defined as the number 
of between-species genome pairs that share at least one HGT divided 
by the total number of between-species genome pairs. To annotate 
ARGs and secretion systems in HGT elements, sequences of HGT ele-
ments were annotated by Prokka v1.12 (ref. 60) in metagenome mode 
and resulting CDS were searched against CARD database v3.1.4 (ref. 61) 
by BLASTP v2.7.1 to identify ARG hits with e value <1 × 10−5, identity >20 
and query coverage >50. Secretion systems were also predicted on CDS 
of HGT elements by EffectiveDB62 with the default setting.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data generated in this study have been submitted to 
the NCBI BioProject database (http://www.ncbi.nlm.nih.gov/biopro-
ject/) under accession number PRJNA745993 (ref. 63). Other associated 
data of the isolate collection, including morphological features and 
raw images, can be accessed at http://microbial-culturomics.com. 
Taxonomy of ASVs was assigned based on 16S rRNA training set 18 
provided by Ribosomal Database Project. The annotation of ARG genes 
and secretion systems in HGT elements was based on CARD database 
v3.1.4 and EffectiveDB database, respectively.

Code availability
Scripts used to analyze plate images in this study can be accessed at 
https://github.com/hym0405/CAMII ref. 64.

References
45. Ji, B. W. et al. Quantifying spatiotemporal variability and noise  

in absolute microbiota abundances using replicate sampling.  
Nat. Methods 16, 731–736 (2019).

46. Edgar, R. C. Search and clustering orders of magnitude faster 
than BLAST. Bioinformatics 26, 2460–2461 (2010).

47. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian 
classifier for rapid assignment of rRNA sequences into the new 

bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 
(2007).

48. Edgar, R. C. MUSCLE: multiple sequence alignment with high 
accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 
(2004).

49. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: 
molecular evolutionary genetics analysis across computing 
platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

50. Baym, M. et al. Inexpensive multiplexed library preparation for 
megabase-sized genomes. PLoS ONE 10, e0128036 (2015).

51. Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: 
resolving bacterial genome assemblies from short and  
long sequencing reads. PLoS Comput. Biol. 13, e1005595  
(2017).

52. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality 
assessment tool for genome assemblies. Bioinformatics 29, 
1072–1075 (2013).

53. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & 
Tyson, G. W. CheckM: assessing the quality of microbial genomes 
recovered from isolates, single cells, and metagenomes.  
Genome Res. 25, 1043–1055 (2015).

54. Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. 
GTDB-Tk: a toolkit to classify genomes with the Genome 
Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).

55. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with 
Bowtie 2. Nat. Methods 9, 357–359 (2012).

56. Li, H. et al. The sequence alignment/map format and SAMtools. 
Bioinformatics 25, 2078–2079 (2009).

57. Jain, C., Rodriguez, R. L., Phillippy, A. M., Konstantinidis, K. T. 
& Aluru, S. High throughput ANI analysis of 90K prokaryotic 
genomes reveals clear species boundaries. Nat. Commun. 9, 5114 
(2018).

58. Camacho, C. et al. BLAST+: architecture and applications.  
BMC Bioinf. 10, 421 (2009).

59. Smillie, C. S. et al. Ecology drives a global network of gene 
exchange connecting the human microbiome. Nature 480, 
241–244 (2011).

60. Seemann, T. Prokka: rapid prokaryotic genome annotation. 
Bioinformatics 30, 2068–2069 (2014).

61. Alcock, B. P. et al. CARD 2020: antibiotic resistome surveillance 
with the comprehensive antibiotic resistance database. Nucleic 
Acids Res. 48, D517–D525 (2020).

62. Eichinger, V. et al. EffectiveDB–updates and novel features  
for a better annotation of bacterial secreted proteins and type III, 
IV, VI secretion systems. Nucleic Acids Res. 44, D669–D674  
(2016).

63. Huang, Y. et al. High-throughput microbial culturomics using 
automation and machine learning. WGS of isolates collection. 
Sequence Read Archive. https://www.ncbi.nlm.nih.gov/
bioproject/PRJNA745993 (2023).

64. Huang, Y. et al. High-throughput microbial culturomics using 
automation and machine learning. GitHub. https://github.com/
hym0405/CAMII (2023).

Acknowledgements
We thank members of the Wang laboratory for their advice and 
comments on the manuscript. H.H.W. acknowledges relevant 
funding support from the NSF (MCB-2025515), NIH (1R01AI132403, 
1R01DK118044 and 1R21AI146817), ONR (N00014-18-1-2237 and 
N00014-17-1-2353), Burroughs Wellcome Fund (1016691), Irma T. 
Hirschl Trust and Schaefer Research Award. R.U.S. is supported by a 
Fannie and John Hertz Foundation Fellowship and an NSF Graduate 
Research Fellowship (DGE-1644869). T.M. is supported by NIH Medical 
Scientist Training Program (T32GM007367). M.R. and F.V.-C. are 
supported by NSF Graduate Research Fellowships (DGE-1644869). 

http://www.nature.com/naturebiotechnology
http://www.ncbi.nlm.nih.gov/bioproject/
http://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA745993
http://microbial-culturomics.com
https://github.com/hym0405/CAMII
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA745993
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA745993
https://github.com/hym0405/CAMII
https://github.com/hym0405/CAMII


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01674-2

C.R. is supported by a Junior Fellows Scholarship from the Simons 
Society of Fellows.

Author contributions
Y.H., R.U.S. and H.H.W. developed the initial concept; Y.H., K.D. and T.B. 
developed morphology-based colony selection software; Y.H., R.U.S. 
and L.A.C. performed experiments and analyzed data with input from 
H.H.W.; T.M., D.R., Y.S., M.R., F.V.-C., A.K. and C.R. assisted with colony 
isolation; Y.S. and S.Z. assisted with isolates WGS; Y.H., R.U.S., S.Z. and 
H.H.W. wrote the manuscript. All other authors discussed the results 
and approved the manuscript.

Competing interests
H.H.W. is a scientific advisor of SNIPR Biome, Kingdom Supercultures, 
Fitbiomics, Arranta Bio, VecX Biomedicines, Genus PLC and a scientific 
cofounder of Aclid, all of whom are not involved in the study. R.U.S and 

K.D. are cofounders of Kingdom Supercultures. All the other authors 
declare no competing interests.

Additional information
Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s41587-023-01674-2.

Correspondence and requests for materials should be addressed to 
Harris H. Wang.

Peer review information Nature Biotechnology thanks Peter 
Turnbaugh and the other, anonymous, reviewer(s) for their 
contribution to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-023-01674-2
http://www.nature.com/reprints







	High-throughput microbial culturomics using automation and machine learning
	Results
	Data-driven culturomics using phenotypes and automation
	Rapid generation of personalized gut isolate biobanks
	Identifying undercultured ‘dark matter’ gut microbiome
	Taxonomy prediction from morphology enables targeted isolation
	Interbacterial growth associations between gut microbiota
	Intra- and interpersonal genomic diversity of gut strains

	Discussion
	Online content
	Fig. 1 A data-driven microbial isolation strategy using phenotypic and morphologic features.
	Fig. 2 Generation of personalized gut isolate biobanks for 20 individuals.
	Fig. 3 Using colony morphology to predict taxonomic identity enhances targeted isolation.
	Fig. 4 Mapping interaction between gut microbiota by colony morphology analysis.
	Fig. 5 Strain-level genomic diversity of the gut microbiome within and between individuals.




