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Many drugs can perturb the gut microbiome, potentially leading to negative
health consequences. However, mechanisms of most microorganism-

drug responses have not been elucidated at the genetic level. Using
high-throughput bacterial transcriptomics, we systematically characterized
the gene expression profiles of prevalent human gut bacteria exposed
tothe most frequently prescribed orally administered pharmaceuticals.
Across >400 drug-microorganism pairs, significant and reproducible
transcriptional responses were observed, including pathways involved
inmultidrug resistance, metabolite transport, tartrate metabolism and
riboflavin biosynthesis. Importantly, we discovered that statin-mediated
upregulation of the AcrAB-TolC efflux pump in Bacteroidales species
enhances microbial sensitivity to vitamin A and secondary bile acids.
Moreover, gut bacteria carrying acrAB-tolC genes are depleted in patients
taking simvastatin, suggesting that drug-efflux interactions generate
collateral toxicity that depletes pump-containing microorganisms from
patient microbiomes. This study provides aresource to further understand
the drivers of drug-mediated microbiota shifts for better informed clinical

interventions.

Today, half of all Americans take at least one prescription drug, with
national spending predicted to reach US$400 billion by 2025'. The
prevalent use of pharmaceuticals is amajor contributor to the alarming
shifts in the gut microbiome, especially in industrialized countries™*.
Arecent screen of >1,000 orally administered drugs revealed a high
frequency of antibacterial activity among human-targeted medications
(24%), especially antipsychotics’. Clinically, proton pump inhibitors
and atypical antipsychotics often trigger microbiota changes, with side
effectsresembling those of antibiotic use (for example, diarrhoea, fun-
galinfection)*®. Eventhough the top three prescribed drug classes (that
is, antihyperlipidaemic agents, antidepressants and analgesics’) are all
linked to gut microbiota disturbances, the mechanisms driving these

shifts are poorly understood’. Physiologically, altered microbiome
composition can negatively impact epithelial integrity®, gut motility®,
nutrient availability’®, immune homeostasis™'> and even treatment
response. For instance, depletionsin gut bacterial diversity have been
linked to worse outcomes inimmunotherapy drug trials” and higher
susceptibility to infection by pathogens such as Clostridioides difficile™.

Gut microorganisms interact with pharmaceutical compoundsina
variety of ways. Bacteria can biotransform drugs toimpact efficacy™",
bioavailability” and toxicity'®. For example, commensal Eggerthella
lenta inactivates digoxin, an orally delivered cardiac glycoside, by
expressing the cardiac glycoside reductase (cgr) operon®. Gut bac-
teria can also deplete xenobiotics from their local environment via
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bioaccumulation” and mitigate the effects of toxic medications by
using conserved antibiotic resistance mechanisms’. Within minutes
of xenobiotic exposure, microorganisms often exhibit highly specific
transcriptional responses®>?., Therefore, transcriptomic measure-
ments can help quickly dissect specific drug-microorganismresponses
(for example, digoxin®, 5-fluorouracil®® and levodopa®). However,
the current cost and scale of bacterial transcriptomics has precluded
high-throughput studies from using this approach®.

Here we describe the systematic transcriptomic analysis of 409
drug-microorganismpairsto dissect gene-level gut bacterial responses
to top pharmaceuticals. We developed a high-throughput transcrip-
tomics pipeline for optimization in non-model gut microorganisms
that was then applied to generate atotal of 978 individual drug-micro-
organism samples (including replicates). By analysing the transcrip-
tomes of prevalent human gut bacteria exposed to top-prescribed
orally administered drugs, we observed shared and strain-specific
responses, including in pathways for drug degradation, vitamin biosyn-
thesis and multidrug efflux. Further analysis of a human microbiome
cohortdataset confirmed the clinical significance of our findings. This
study highlights the utility of large-scale transcriptomics for functional
discovery of gut microbiota-xenobiotic interactions.

Results

Transcriptomic map of microbial responses to top medicines
Of the top 200 drugs prescribed today, 83% are orally delivered and
expectedtointeract directly with the gut microbiome>>**, We therefore
sought tomeasure the transcriptomic responses of prevalent gut bac-
teriaexposed to top-prescribed oral pharmaceuticals. Weimplemented
and optimized a multiplexed RNA sequencing (RNA-seq) technique”
for high-throughput transcriptomics of non-model gut bacteria and
incorporated cost-efficient ribosomal RNA (rRNA) depletion for diverse
non-model gut bacteria that we previously developed* (Fig. 1a). This
modified pipeline can generate high-quality transcriptomes for diverse
gut bacterial phyla at a cost of <US$16 for -1 million reads per sample
(Supplementary Table1).

We assembled a panel of 14 representative and highly prevalent®®°
human gutisolates spanning the Bacteroidetes, Firmicutes, Actinobac-
teriaand Proteobacteria phyla (Supplementary Fig.1and Supplemen-
tary Tables 2 and 3) and 19 oral drugs from the top-prescribed drugs
in 2017 according to the Agency for Healthcare Research and Quality
(Supplementary Table 4 and Methods)™. Our druglistincluded the top
eight most prescribed drugs as well asten additional neurotransmitter
modulators, which were included owing to established associations
between the psychotherapeutic drug class and microbiota composi-
tional changes’. Lenalidomide, a chemotherapeutic with the largest
market cap in the small-molecule drug class®, was also added.

We first assessed the antimicrobial activity of the chosen drugs
against our bacterial panel (Fig. 1b, Supplementary Fig. 2 and Meth-
ods). Drug concentrations were chosen to span median drug con-
centrations within the small intestine and large intestine, which have
been estimated to approach 20 and 100 pM, respectively’. We did not
observe growthinhibition for most strains at2 or 20 pM concentration
(Supplementary Fig. 2). At 100 pM, growth inhibition was observed
for at least one drug in 18 of 19 strains within 24 h (Fig. 1b). Notably,
Bifidobacterium longum did not exhibit growth defects in any drug
condition. Broad-spectrum antimicrobial activity was seen for simv-
astatin, amlodipine and a subset of psychotherapeutics (that is, ser-
traline, paroxetine, duloxetine and fluoxetine), in agreement with
previous reports’. Interestingly, we observed the greatest magnitudes
of drug-induced growth defects within Bacteroidetes strains, suggest-
ing that these species are more susceptible to drug toxicities (Fig. 1b
and Supplementary Fig. 2). We further validated that the observed
toxicity profiles extended to complex bacterial communities by expos-
ing the drug paneltoafresh faecal sample from a healthy volunteer. We
observed similar growthinhibition profiles of 13 panel strains grownin

the faecal community (Supplementary Fig. 3), supporting the relevance
of our individual strain-level growth measurements in the context of
acomplex consortium.

As substantial growth inhibition can confound transcriptional
measurements, we performed all subsequent transcriptomic assays at
20 pM, which reasonably approximated intestinal drug concentrations
for detecting drug responses while minimizing drug toxicities**. To
furtheravoid theimpact of antimicrobial toxicity, cells were collected
at1.5 h post-exposure, which is shorter than the doubling time of sev-
eral gut bacteria®. The transcriptomic pipeline was first validated
using Eggerthella lenta exposed to our drug panel, as well as digoxin
asapositive control (Supplementary Figs. 4 and 5and Supplementary
Table 5). Differential Eggerthella lenta gene expression was observed
in17 of 20 drug conditions, including the expected upregulation of the
cgr operon by digoxin” (Supplementary Fig. 5). The transcriptomic
pipeline was thus applied to all drug-microorganism pairsin biological
duplicates (Supplementary Fig. 4b and Supplementary Tables 6-8).

Overall, substantial and consistent transcriptional responses
were observed across drug classes and bacterial phyla (Supplementary
Table 6). We used the magnitude of global transcriptional response as
acommon proxy** by calculating the ratio of differentially expressed
genes (DEGs) to the total gene count per genome, which wereferto as
the DEGratio or DEGR (Fig. 1c). All drugs produced differential expres-
sionin at least one strain. The largest aggregate DEGR was produced
by simvastatin (0.014), followed by sertraline (0.010), levothyroxine
(0.006) and paroxetine (0.004) (Fig. 1c, top bars). Notably, in many
cases, drugs eliciting large global transcriptional changes also exhib-
ited broad-spectrum toxicity in the growth screen (Fig. 1b,c and Sup-
plementary Fig. 6).

Large transcriptional changes are often associated with expression
changes of global regulators and transcription factors (TFs)*. Indeed,
the drug-microorganism pairings associated with the highest DEGRs
(simvastatin-Bacteroides stercoris, sertraline-Fusicatenibacter sac-
charivorans, simvastatin-Alistipes shahii) also induced the highest
numbers of TFs (14, 13 and 12, respectively) (Supplementary Fig. 7).
However, in several cases, bacterial-drug exposures generated dif-
ferential expression without TF modulation, suchas Dorea longicatena
exposed to metoprolol tartrate and Phocaeicola dorei exposed to vari-
ous selective serotonin reuptake inhibitors (SSRIs) (Supplementary
Fig. 7). In these cases, differential expression was not consistently
correlated with antimicrobial activity (Fig. 1b,c). These results indicate
that drug-microorganism exposures producing large and broad gene
expression changes often correlate with drug toxicity, while those
eliciting specific transcriptional responses may not.

To understand the functional impact of different exposures
on the gut microbiota, we performed pathway enrichment analysis
using the Kyoto Encyclopedia of Genes and Genomes (KEGG) data-
base to classify DEGs across the drug panel, agnostic of strain iden-
tity (Fig. 2). Most differentially regulated modules (adjusted P value
(P,g) <0.01, fold change (FC) > 4) were associated with mechanisms
of antibiotic resistance (Fig. 2a). Specifically, pathways related to
multidrug resistance, transport and two-component systems were
enriched. Simvastatin, sertraline and amlodipine—the drugs exhibit-
ing the broadest toxicity in growth screens—strongly upregulated
multidrug resistance pathways associated with efflux transporters.
Furthermore, trazodone and levothyroxine, which triggered differen-
tialexpressionin Bacteroidetes, Firmicutes and Actinobacteriawithout
impacting growth (Fig. 1b,c), showed similarly enriched pathways to
more toxic screened compounds (Fig. 2a). While growth deficits were
not detected in trazodone- and levothyroxine-treated cultures at the
maximum concentrations, this result suggests that these compounds
could exhibit toxicity in vivo at concentrations exceeding 100 pM.
Notably, post-treatment microbiota changes have been detected in
hypothyroid patients taking levothyroxine* and psychiatric patients
taking trazodone”.
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Fig.1| Top-prescribed drugs elicit rich transcriptomic responses from
prevalent gut bacterial species. a, Schematic of our high-throughput
transcriptomic pipeline for non-model gut microorganisms. b, The heat map
colourindicates the deltain average OD at 48 h of bacterial strain growth in
mGAM supplemented with different pharmaceuticals at 100 pM as compared
to asame-volume solvent control (n =3 per condition). Drug condition is
indicated on the x-axis, and strain identity is indicated on the y-axis. Asterisks
indicate >0.3 average absolute change in growth with P, < 0.05, calculated
using two-sided independent ¢-test with Benjamini-Hochberg correction. c,
Bacterial strains were exposed to drugs (n = 2 per condition) or vehicle controls
(n=4 per condition), and differentially expressed genes (P,q; < 0.05, calculated

M Rikenellaceae

as above) were identified. The heat map colour represents the log,, value of
the DEGR, defined as the number of differentially expressed genesinadrug
condition divided by the total number of genes within a strain genome, with
the drugindicated on the x-axis (classes grouped by colour) and strain identity
indicated on the y-axis. The bar plot inserts show log,, values of average DEGRs
across strains (top bar plotinsert) or drugs (left bar plotinsert). Amaximum
likelihood phylogenetic tree is shown on the left with bacterial family identity
indicated by colour in the figure legend. PPI, proton pump inhibitor; CCI, calcium
channel inhibitor; SSRI, selective serotonin reuptake inhibitor; SNRI, serotonin
norepinephrine reuptake inhibitor; NDRI, norepinephrine-dopamine reuptake
inhibitor.

We next examined functional orthologues within pathways that
exhibited the greatest magnitudes of differential regulation across
drug conditions (Fig. 2b). Among the top seven most upregulated
orthologues, six corresponded to conserved multidrug efflux pumps
(Fig. 2b). Among these orthologues, the top four (HAE1, AcrA, mexK
and oprM) belonged to the Resistance-Nodulation-Division permease

superfamily, adrug and heavy metal efflux system whose upregulation
is associated with gram-negative bacterial antibiotic resistance®**,
Thefifthand sixth orthologues (bcrB and ABCB-BAC) belonged to the
ATP-binding cassette (ABC) superfamily, which was also highly repre-
sented among the top downregulated orthologues across drug condi-
tions (Fig. 2b). Interestingly, the ABC superfamily is not considered to
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Fig. 2| Pathway enrichment analysis reveals modulation of conserved

efflux pathways by top pharmaceutical compounds. a, KEGG modules

with significant enrichment (P,4; < 0.05 by two-sided independent t-test with
Benjamini-Hochberg correction, e value <107°) based on pathway analysis of
DEG datasets are shown. The drug condition is shown on the x-axis, with the
colour of each drug condition corresponding to the background colour of the
bubble plot. Identifiers (IDs) of KEGG modules with significant enrichment are
shown on the left y-axis, and KEGG pathway groups are shown on the right y-axis.
Thebubble colour indicates the direction of regulation (red, upregulation; blue,

downregulation), the bubble intensity indicates log,(FC) enrichment and the
bubble size indicates the level of significance (-log;o(P.g)). b, Top 19 upregulated
and top 10 downregulated functional orthologues within the DEG dataset across
drugs, as annotated within the KEGG Orthology (KO) database. The bar colour
indicates the direction of transcriptional regulation as in a. —log,,(P,q), calculated
asina, is shownon the x-axis. The K number assigned by the KO database is shown
onthe left y-axis, and the putative orthologue function is shown on the right
y-axis.

contribute substantially to bacterial multidrug resistance; however,
these pumps are highly associated with chemotherapy resistance
in eukaryotic cells*’. Together, these observations suggest that gut
bacterial strains use conserved multidrug efflux pumps to ameliorate
toxicities of human-targeted drug compounds®.

Given the link between the identified Resistance-Nodulation—
Division-type efflux pumps and antibiotic resistance in gram-negative
species®?*’, we wondered whether gut bacteria use the same resistance
pathways to ameliorate toxicities in commonly prescribed antibiotic

classes. To explore this question, we generated transcriptomes for
four species (Agathobacter rectalis H1, D. longicatena H1, B. longum
H1and Phocaeicola vulgatus H1) exposed to seven commonly pre-
scribed antibiotics that target bacterial synthesis of DNA (ciprofloxa-
cin), proteins (tetracycline, streptomycin and erythromycin) or the cell
membrane (cefotaxime, ampicillinand vancomycin) (Supplementary
Figs.4 and 8 and Supplementary Table 9). Principal coordinates analysis
(PCoA) revealed that transcriptomic responses to traditional anti-
biotics clustered by drug target across sensitive strains (A. rectalis,
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Fig. 3| Top pharmaceutical compounds impact gut bacterial metabolism,
vitamin production and mitigation of toxic metabolites. a, The top schematic
shows the components of the tartrate dehydratase (t¢d) operonin Escherichia
coli. Genes within the operon are shown on the x-axis, and isolates containing
ttd analogues are shown on the y-axis. The heat map colour indicates log,(FC) in
TPMexpression. *P,g < 0.05; **P,4; < 0.01; **P,; < 0.00L, calculated by two-sided
independent ¢-test with Benjamini-Hochberg correction. Grey panels indicate
the absence of agene analogue. b, The relative abundance of bacterial isolates
containing the ttd operon was calculated within a dataset of patients with T2D**
(n=323total patients). Thex-axis indicates patient cohorts, grouped by healthy
controls not taking metoprolol (red dots), patients with T2D taking metoprolol
(greendots) and patients with T2D not taking metoprolol (blue dots). The
relative abundance of isolates is shown on the y-axis as a box and whisker plot.
Box hinges correspond to the 25th and 75th percentiles, and whiskers extend to
values within 1.5 of the interquartile range (outliers omitted). P values calculated

using two-sided independent ¢-test are annotated with brackets. ¢, The top
schematic shows the components of the riboflavin biosynthesis (rib) operonin

D. longicatena H1. Drugs are shown on the x-axis (grouped and coloured by class),
and gene components of the rib operon are shown on the y-axis. The heat map
coloursindicate log,(FC) in TPM expression. The asterisks indicate significance
as calculated and annotated in a. d, Regulation of acrAB-tolC within Bacteroidales
isolates by atorvastatin and simvastatin. The bottom schematic shows the
components of the acrAB-tolC operon in Escherichia coli. Genes within acrAB-
tolCare shown on the x-axes, and isolates containing AcrAB-TolC analogues

are shown on the y-axis. Heat map colours indicate log,(FC) in TPM expression,
asindicated by the bottom-right red-to-blue colour bar. Asterisks indicate
significance as calculated and annotated in a. Dots to the right of the strain rows
indicate percentage of operonidentity compared with the P. vulgatus AcrAB-TolC
reference”, asindicated by the top right red-to-yellow colour bar.

D. longicatena, P. vulgatus), suggesting that bacteria use conserved
pathways to mitigate toxicities of drugs with similar bacterial targets
(Supplementary Fig. 8a). Notably, minimal transcriptomic responses
to streptomycin exposures were observed, consistent with theinherent
streptomycin resistance of anaerobically grown bacterial isolates*.
Furthermore, B. longum, the only bacterial strainin our panel that did
not exhibit growth sensitivity to at least one screened pharmaceuti-
cal, showed minimal transcriptional responses to antibiotic expo-
sures compared with a vehicle control, a behaviour consistent with
resistance®. To compare bacterial pathways induced by traditional

antibiotic exposures, we next performed a KEGG pathway enrich-
ment analysis of DEGs in the four tested bacteria exposed to orally
delivered drugs or traditional antibiotics (Supplementary Fig. 8b).
Membrane-directed antibiotics upregulated pathways associated with
cell membrane synthesis and modification (vancomycin resistance,
fatty acid synthesis pathways), while ribosomal-targeted antibiotics
induced upregulation of ribosomal pathways and downregulation of
ATP synthesis. Remarkably, our analysis revealed no overlap in bacte-
rial pathways induced by non-antibiotic pharmaceuticals and tradi-
tional antibiotic compounds, suggesting that non-antibiotic orally
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delivered compounds impact unique mechanisms of prokaryotic
multidrug resistance.

Drugs impact gut bioavailability, biosynthesis and toxicity
Toobtainadeeper functional understanding of bacterial-druginterac-
tionsatthe operonlevel, we searched for clusters of DEGs transcribed
within the same operon. Numerous differentially expressed operons
wereidentified across strains (Supplementary Table 8). Existing mecha-
nistic studies of gut microbiota-drug interactions have identified a
range of bacterial drug responses that can cause differential treatment
outcomes, including drug metabolism, toxicity mitigation and altera-
tion of the prokaryotic metabolome®'**, To explore the diversity of
physiologically relevant bacterial-xenobiotic interactions, we selected
three representative operons associated with drug metabolism, vitamin
biosynthesis and toxicity mitigation for further examination (Fig. 3).

First, we observed the upregulation of the tartrate dehydratase
(ttd) operonin Escherichia coli, A. rectalis and D. longicatena exposed
to metoprolol tartrate, a beta blocker used to treat hypertension*
(Fig. 3a). Metoprolol is chemically formulated either as metoprolol
tartrate or metoprolol succinate for immediate release or extended
release, respectively. Which form of metoprolol is administered can
impact bioavailability, with metoprolol tartrate producing higher
peak-to-trough variation among patients**. For bacteria, dietary tar-
trate metabolism through the ¢¢d operon provides another carbon
sourceinthegastrointestinal tract™. Our results suggest that certain gut
microorganisms can metabolize the tartrate salt ofimmediate-release
metoprolol, which could contribute to fluctuations in drug bioavail-
ability within patient cohorts. These findings could also have broader
implications for other tartrate-conjugated drugs*®. Furthermore,
upregulation of tartrate metabolism by metoprolol could have unin-
tended negative consequences in the context of cardiovascular dis-
ease”. Increases in bacterial tartrate metabolism have been linked to
metabolicdisorders, including atherosclerotic cardiovascular disease,
type 2 diabetes (T2D) and obesity”. Enrichmentin tartrate metabolism
has also been associated with higher abundance of Escherichia coli,
a metoprolol tartrate metabolizer identified in our screen. Using a
published clinical metagenomic microbiome dataset of patients with
T2D*, we performed an additional analysis exploring the distribution
of ttd genes among patients with T2D consuming metoprolol. We found
that patients with T2D taking metoprolol had anincreased abundance
of the ttd operon in their gut metagenome compared with patients
not taking metoprolol (P=0.046) and healthy controls (P=0.008;
Fig.3b). Therefore, our findings combined with previous studies sug-
gest that treatment with metoprolol tartrate for hypertension, which
is the strongest predictor for atherosclerotic cardiovascular disease*,
might inadvertently influence the pathophysiology of a metabolic
disorder viaanincrease in microbiota tartrate metabolism.

Next, we identified differential regulation of the riboflavin bio-
synthesis (rib) operon in D. longicatena by several drugs within our
panel (Fig. 3¢). The gut microbiome is an important source of ribo-
flavin (vitamin B,) in humans®°. Riboflavin production is an essential
pathway in bacteria, as downstream metabolites flavin mononucleo-
tide and flavin adenine dinucleotide are co-enzymes for oxidases,
reductases and dehydrogenases®'. In gram-positive bacteria, riboflavin
biosynthesis is downregulated by a flavin mononucleotide-responsive
riboswitch, which also responds to roseoflavin®. In our transcriptom-
ics dataset, several SSRIs (sertraline, paroxetine, fluoxetine, dulox-
etine), a cardiovascular medication (amlodipine), simvastatin and
levothyroxine all downregulate riboflavin production in D. longicatena.
We also observed upregulation of the rib operon by D. longicatena in
response to trazodone and atorvastatin exposure. Clinically, vitamin
B, deficiency is associated with a higher risk of psychiatric disorders
for which SSRIs are indicated (for example, depression), although
whether these depletions are a cause or aresult of disease is not under-
stood****, Reduced riboflavin concentrations can also contribute to

hyperhomocysteinaemia, a well-studied independent risk factor for
atherosclerosis®**. Our data suggest that the administration of certain
SSRIs and cardiovascular medications could modulate vitamin B, levels
inthe setting of mood disorders or heart disease, respectively, which
could have unintended detrimental consequences on the disease state.

Finally, we observed a strong statin-mediated upregulation of
genes encoding the AcrAB-TolC efflux pump in all Bacteroidales strains
tested (Bacteroidesfragilis, B. stercoris, Bacteroides uniformis, P. dorei, P.
vulgatus, Parabacteroides distasonis, A. shahii; Fig. 3d). The AcrAB-TolC
pump hasbeenlinked to resistance against several classes of antibiotics
as well as non-antibiotic orally delivered pharmaceuticals including
methotrexate and tamoxifen®*. The pump is also known to mediate
bacterial sensitivity to retinol and secondary bile acids”. Given that
previous studies have linked statin use with changes in gut microbiome
composition®, we thus explored the mechanism by which upregulation
of AcrAB-TolC by statins could impact microbial physiology in the gut.

Statins modulate AcrAB-TolC activity in gut microorganisms
Statins have been widely studied for their potential as non-traditional
antibiotics, with simvastatin garnering particular attention for its
activity against multidrug-resistant pathogens such as Staphylococ-
cus aureus®. Simvastatin alters the composition of gut microbiomein
patients, but the mechanism driving this microbial shift is not under-
stood®. In our transcriptomic screening, we found that simvastatin
strongly upregulated acrAB-tolC genes across multiple Bacteroidales
strains, while atorvastatin significantly upregulated acrAB-tolC genes
onlyinP.distasonis (Fig.3d). Interestingly, these transcriptional profiles
correlated with strong and modest toxicities exhibited in our growth
screens by simvastatin and atorvastatin, respectively (Fig. 1b), moti-
vating further explorationinto the role of AcrAB-TolC in the interplay
between gut microorganisms and antimicrobial compounds.

In Bacteroides species, the AcrAB-TolC efflux pump ameliorates
the toxicity of antibiotics and common dietary metabolites such
as retinol (vitamin A)*". We thus hypothesized that drugs altering
AcrAB-TolC expression in Bacteroidales species could result in tar-
geted changesin the toxicity of other compounds. Using P. distasonis,
we first determined the minimum inhibitory concentration (MIC) of
retinol (>24 pg m1™) and several common antibiotics with different
mechanisms of action whose resistance is mediated by AcrAB-TolC*
(Supplementary Table 10). In the presence of simvastatin, the MICs
of several of these compounds were significantly shifted, with retinol
showing the most pronounced effect (>2-fold decrease; Supplemen-
tary Fig. 9). We then exposed four Bacteroidales strains (P. distasonis
H1, P. dorei H1, P. vulgatus H1 and P. vulgatus ATCC 8482) to retinol
in the presence or absence of statins and additional drugs (sertra-
line, trazodone, amlodipine) observed to upregulate the acrAB-tolC
operon (Fig. 4a and Supplementary Fig. 10). As a negative control,
retinol-exposed non-Bacteroidales strains (Escherichia coli, A. rectalis,
D. longicatena) were co-incubated with simvastatin (Supplementary
Fig.11). At 20 uM, simvastatin enhanced the sensitivity toretinolin all
Bacteroidales strains, with the strongest shift seenin P. distasonis and
P. vulgatus (fourfold reduction in MIC; Fig. 4a). In non-Bacteroidales
strains (Escherichia coli, D. longicatena, A. rectalis), retinol MICs were
notsignificantly altered by simvastatin co-incubation (Supplementary
Fig.11). Notably, we observed amodest shift approaching significance
in simvastatin-treated A. rectalis, which we attribute to combined
global toxicity burdens of simvastatin and retinol, unrelated to the
AcrAB-TolC pump. Sertraline modestly increased retinol sensitivity
in all Bacteroidales strains, amlodipine showed similar effects in two
of four strains (P. vulgatus H1 and P. dorei H1), atorvastatin modestly
decreased the MIC of retinol in P. distasonis only and trazodone did
notsignificantly influence the MIC of retinol inany strains (Fig. 4aand
Supplementary Fig.10).

Deoxycholic acid (DCA) is a secondary bile acid whose toxicity is
also modulated by AcrAB-TolC*. We thus tested whether simvastatin
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Fig. 4| Statin exposure alters Bacteroides sensitivity to common dietary
metabolites via the AcrAB-TolC efflux pump. a, Bacteroidales isolates exposed
to retinol at various concentrations in the presence of 20 pM simvastatin (orange
lines), atorvastatin (green lines) or vehicle control (blue lines). Graph titles
indicate strain identity, with retinol concentration shown on the x-axis and
growth (ODy,,) relative to a vehicle control shown on the y-axis. b, P. distasonis
Hlexposed to various DCA concentrations in the presence of 20 pm simvastatin
(orange lines) or vehicle control (blue lines). Bile acid concentration is shown
onthex-axis, and growth relative to a vehicle control is shown on the y-axis.
Standard deviation bars (n = 3 biologically independent culture replicates per
condition) are shown; *P,4; < 0.05; **P,; < 0.01; ***P,4; < 0.001, calculated using
two-sided independent ¢-test with Benjamini-Hochberg correction. ¢, P. vulgatus
Hloverexpressing different copies of AcrAB-TolC (see schematic) or a plasmid
control exposed to different concentrations of retinol in the presence of 20 pm
simvastatin (n = 3 biologically independent culture replicates, orange lines) or

[Retinol] (ug ml™)

vehicle control (n = 3 biologically independent culture replicates, blue lines).
Retinol concentration is shown on the x-axis, and average OD, growth across
replicates relative to the average growth of vehicle controls is shown on the
y-axis.d, Structures of atorvastatin, simvastatin and tenivastatin (simvastatin-
hydroxy acid). The lactone ring in simvastatin is showninred. e, P. distasonis H1
and P.vulgatus ATCC8482 grown in liquid mGAM supplemented with simvastatin
(orangeline), tenivastatin (raspberry line) or atorvastatin (green line) at 100 pM
concentrations. Standard error bars (n = 4 biologically independent culture
replicates per condition) for average OD,,, growth across replicates are shown.
f, P. distasonis H1 retinol MIC curves in the presence of 20 pM simvastatin (n =2,
orangeline), tenivastatin (n = 3 biologically independent culture replicates,
raspberry line) or vehicle control (n = 3 biologically independent culture
replicates, blueline). P,q values and standard deviations of average OD¢,, growth
ateach concentrationare annotatedasinb.

enhanced DCA toxicity in P. distasonis. Simvastatin at 20 pM sig-
nificantly limited P. distasonis growth when co-incubated with DCA
(MIC = 64 pg ml™, 66% reduction; Fig. 4b). Simvastatin did not lower the
MIC of other secondary bile acids (that is, hydroxydeoxycholic acid and
ursodeoxycholic acid) whose toxicity is not mediated by AcrAB-TolC>
(Supplementary Fig.12). Importantly, the simvastatin-altered MICs of
retinol and DCA each fall within estimated colon concentration ranges
of these metabolites in the human gut®”*.

Having established that simvastatin significantly upregulates
AcrAB-TolC in Bacteroidales species and that this exposure increases
Bacteroidales sensitivity to retinol and DCA, we next sought to con-
firm that AcrAB-TolC upregulation directly increases sensitivity to
dietary metabolites. To establish causality of AcrAB-TolC upregulation

inincreasing collateral sensitivity of Bacteroidales species to reti-
nol, we engineered a P. vulgatus Hl isolate to overexpress different
copies of AcrAB-TolC or a control cargo, and measured retinol MIC
for engineered isolates exposed to simvastatin or DMSO (Fig. 4c and
Methods). Compared with plasmid overexpression of a cargo control,
overexpression of either copy of AcrAB-TolC increased collateral sensi-
tivity to retinol, establishing that efflux pump overexpression directly
increases collateral sensitivity to vitamin A. Notably, while minimal
toxicity was associated with plasmid overexpression in the control
P. vulgatus strain, acrAB-tolC expression also increased the toxicity
of simvastatin at 20 pM concentrations, as exhibited by P. vulgatus
growth at retinol concentrations of zero. Furthermore, overexpres-
sion of acrAB-tolC copy 2 caused greater enhancement of retinol and
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Fig.5|AcrAB-TolCis linked to gut microbiota shifts in statin-treated patient
populations. a, The number of genomes containing acrAB-tolC analogues based
onref. 63. The bacterial families are indicated on the x-axis and by bar colour.
The number of acrAB-tolC-containing genomes within each family is indicated
onthe y-axis. b, The relative abundance of acrAB-tolCwithin treatment groups
of the BMIS cohort is shown as a box and whisker plot. Box hinges correspond

to the 25th and 75th percentiles, and whiskers extend to values within 1.5 of the
interquartile range (outliers omitted). Statin or control cohorts areindicated

on thex-axis. Simvastatin (red) and atorvastatin (blue) cohorts are highlighted,
and corresponding Pvalues (calculated using two-sided independent ¢-test)

are annotated with coloured brackets. Each dot represents a different patient

Statin use .
Statin use

metagenome. ¢, Relative abundance of bacterial species within the BMIS dataset,
annotated using ref. 63. For each genus, the log,, relative abundance within
simvastatin-treated (red) and non-treated (black) individuals is shown as abox
and whisker plot. Box hinges correspond to the 25th and 75th percentiles, and
whiskers extend to values within 1.5 of the interquartile range (outliers omitted).
*P < 0.05 as calculated using two-sided independent ¢-test. d, Relative abundance
of Bacteroides species (left two panels) or all gut bacteria (right two panels) in
simvastatin-treated and untreated individuals within the BMIS cohort. Within
each panel, the x-axis indicates the simvastatin and the control treatment
cohorts, and relative abundances of species with or without the acrAB-tolC
operonareindicated on the y-axis. Pvalues are annotated asinb.

simvastatin toxicity in P. vulgatus as compared with copy 1, suggesting
distinct efficacy levels of these genomic efflux pump copies. Taken
together, our transcriptomic dataset revealed a statin-mediated inter-
action with the AcrAB-TolC efflux pump that could enhance the anti-
microbial effects of common dietary and host metabolites in vivo,
potentially accounting for the gut microbiota alterations seen in
statin-treated patient populations®.

Simvastatinis generally administered as alactone prodrug, while
atorvastatin is administered in the active compound form*® (Fig. 4d).
Giventherole of lactone moieties in many antibiotics®®, we wondered
whether the transcriptional regulation of the AcrAB-TolC efflux pump
by simvastatin might be linked to the toxicity of its lactone moiety. To
test whether the lactone ring in simvastatin induces toxicity, we incu-
bated simvastatin-sensitive P. distasonis and P. vulgatus strains with the
lactone prodrug (simvastatin), the non-lactone activated compound
(tenivastatin) and atorvastatin (Fig. 4e). Interestingly, tenivastatin,
which does not contain alactone ring, did not exhibit toxicity against
either tested strain. Notably, AcrAB-TolC preferentially binds to hydro-
phobic substrates (for example, lipophilic lactone side chains)®"%*. To
determine whether AcrAB-TolC modulation of bacterial inhibition by
dietary metabolites depends on the presence of the toxic simvastatin

lactone moiety, we exposed a P. distasonis strain to various concen-
trations of retinol in the presence or absence of 20 uM simvastatin
or tenivastatin (Fig. 4f). Tenivastatin did not lower the MIC of retinol,
suggesting that the intactlactone ring of the unmetabolized prodrug
simvastatin is necessary to enhance bacterial retinol sensitivity.

Next, to better understand the prevalence of AcrAB-TolC in the
human gut microbiome, we assessed its frequencyin 4,930 representa-
tive metagenome-assembled genomes (MAGs) sourced from healthy
human microbiomes (Fig. 5a and Methods)®. A total of 106 MAGs
contained acomplete AcrAB-TolC homologue (e <107, coverage > 90%,
identity >40%), of which 59.4% were linked to the Bacteroidaceae fam-
ily. The high prevalence of acrAB-tolCin Bacteroidaceae suggests that
Bacteroidaceae-dominated individuals may be particularly susceptible
to simvastatin-mediated microbiota changes.

To explore the clinical relevance of simvastatin-induced upreg-
ulation of the acrAB-tolC operon, we next quantified the metagen-
omic abundance of this operon’s homologues in stool samples from
the body mass index spectrum (BMIS) cohort® (Fig. 5Sb-d). Notably,
the AcrAB-TolC pump was highly prevalent in faecal metagenomes
of the BMIS cohort, with 91.6% of study participants showing >20%
median relative abundance of AcrAB-TolC across treatment groups
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Fig. 6 | Diverse patterns of transcriptional response among conspecific
bacterial isolates. a, Plot of PCoA results comparing the transcriptomic
responses of tested gut bacterial isolates to top pharmaceutical compounds,
using DEGRs within each drug condition as features. The variance contribution
of the first and second principal coordinates is shown on the x- and y-axes,
respectively. The bacterial family of eachisolate is indicated by colour.
Conspecific strains are connected by dotted lines. b, For each possible pair

of Bacteroidaceae strains, acomparison of ANIs (shown on the x-axis) and
Spearman correlation of DEGRs across all drug conditions (shown on the y-axis)
isshown. Each dot indicates a pairwise comparison, with colour indicating
whether the comparison was performed on conspecific (red) or allospecific

(green) strains. ¢, Differential regulation of selected operons by simvastatin
(purple dots), sertraline (green dots), paroxetine (blue dots) or levothyroxine
(red) dots is depicted for different conspecific strains (purple boxes depict
operon expression in strain H1; yellow boxes depict operon expressionina
publicly available strain). Grey dots indicate P,q; > 0.05. Species and operon
identities areindicated by panel titles, and strainidentity is shown on the right
y-axis. The log,(FC) in gene expression compared with that of a vehicle control is
shown on the left y-axis, and aligned gene identities (IDs) are shown on the x-axis.
The absence of an operonis indicated by a beige panel with red annotation. Grey
dashed lines and boxes indicate the significance threshold of FC > 2.

(Fig. 5b). Furthermore, a significant decrease in relative abundance
of the acrAB-tolC operon (P,4; = 0.0102) in the gut microbiome of
patients receiving simvastatin was observed (Fig. 5b). In contrast,
acrAB-tolCgene abundance was not changed in patients who received
atorvastatin, fluvastatin, pravastatin or rosuvastatin. Accordingly,
simvastatin-treated patients also showed a significant depletion in
Bacteroides species (P=0.0030), as well as increases in Alistipes and
unclassified Firmicutes (Fig. 5c). Moreover, Bacteroides and other
bacteria containing a complete AcrAB-TolC homologue were sig-
nificantly depleted in simvastatin-treated cohorts compared with
untreated controls (P= 0.0013), whereas bacteria missing this operon
were not depleted (P=0.699; Fig. 5d). Notably, a relative abundance
analysis for the separate gene components of the acrAB-tolC operon
in statin-treated cohorts identified the most significant depletion
(P=0.003)inthe AcrB2gene, whichencodes ahomotrimer docked to
the intracellular bacterial membrane that binds to pump substrates
(Supplementary Fig.13)°.

Taking all these data together, we posit a potential model of
statin-mediated depletion of gut microorganisms containing the
AcrAB-TolC efflux pump (Supplementary Fig. 14). Under normal condi-
tions, gut microbial residents containing AcrAB-TolC homologues (for

example, Bacteroidales species) use this pump to prevent periplasmic
and cytoplasmic accumulation of metabolites, such as retinol and
deoxycholic acid, to toxic levels. In the context of simvastatin treat-
ment, acrAB-tolCis upregulated, leading to increased collateral sen-
sitivity to dietary metabolites and reduced cell viability. Efflux pump
upregulationleading to decreased bacterial viability has been observed
in clinical cohorts®, although the mechanism of this phenomenon
has not been elucidated to date. Notably, the prototypical acrAB-tolC
operon is regulated by the self-contained acrR repressor (Fig. 3d),
which in Escherichia coliis strongly upregulated under conditions of
global stress®. Thus, it is possible that by inducing AcrR expression,
engineered AcrAB-TolC pump overexpression could indirectly impact
co-regulation of global stress response and lead to reduced cell viabil-
ity. Regardless, with simvastatin treatment, increased expression of
AcrAB-TolC causes decreased viability of gut bacteria and consequen-
tial alterations in gut microbiota composition.

Strain differences in drug-mediated transcriptomic responses
Finally, we sought to explore how drug-microorganism transcriptional
responses differed among strains in our panel (Fig. 6 and Supplemen-
tary Fig. 15). First, we analysed the DEGRs across all drugs by PCoA
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to quantify similarities in global transcriptomic profiles of strains.
Interestingly, we found that microbial responses to drugs clustered sig-
nificantly at the family level [that is, Bacteroidaceae, Lachnospiraceae,
P=0.003 by permutational multivariate analysis of variance (PER-
MANOVA) test; Fig. 6a], suggesting that closely related bacteria may
respond similarly to different drugs. However, a detailed comparison
of conspecific strainsrevealed amore variable pattern of response. For
example, while strains of A. rectalis (H1 versus ATCC 33656) exhibited
highly consistent drug responses, strains of B. uniformis (H1 versus
ATCC 8492) responded more heterogeneously to pharmaceuticals
(Fig. 6a).

To further delineate the strain specificity of drug responses, we
next quantified the average nucleotide similarity (ANI) between differ-
ent Bacteroidales strain pairs, whichwe compared with the correlation
of global transcriptomic response (DEGR values) between strains
(Fig. 6b). We observed higher correlations (R > 0.7) in overall drug
response between pairs withthe greatest ANIvalues (ANI > 0.95), sug-
gesting that the more similar the bacterial genome, the more similar
the global transcriptomic response across drug conditions (Fig. 6b).
To compare the transcriptomic responses of conspecific strains more
closely, we next aligned the genomes for all conspecific strains (Meth-
ods). We observed high correlations (R*> 0.79) in expression of shared
genes between all conspecific strain pairs, suggesting shared transcrip-
tional responses between isolates (Supplementary Fig. 15).

We next sought to investigate strain-level drug response at the
operon level. Remarkably, we identified two common types of tran-
scriptional differences between conspecific strains: (1) absence of an
operoninoneisolate and (2) differential regulation of ashared operon
between isolates, with both differences possibly having functional
impacts. For example, sertraline upregulated a mobile element con-
taining type IV secretion system machinery in A. rectalis H1 that was
not presentinA. rectalis ATCC 33656 (Fig. 6¢). Similarly, sertraline and
paroxetine upregulated BepE efflux machinery in B. uniformis Hl that
was not presentin ATCC 8492 (Fig. 6¢). Onthe other hand, several drugs
(sertraline, paroxetine, levothyroxine, simvastatin) downregulated a
shared putative L-arabinose utilization operonin A. rectalis H1, but this
same operon (98.31% average conservationin coding sequence) was not
differentially expressedinA. rectalis 33656 (Fig. 6¢). Conversely, these
compounds downregulated a shared putative transketolase operon
(99.89% average conservationin coding sequence) in A. rectalis 33656
only (Fig. 6¢). Interestingly, inaddition to differencesin shared operon
expression betweenisolates, we also observed instances of differential
regulation of different gene copies by the same drug perturbation
(Fig. 6¢). For example, within F. saccharivorans DSMZ 26062, levothy-
roxine, sertraline, simvastatin and paroxetine exposures triggered
simultaneous upregulation and downregulation of different copies
of araQ, a permease protein associated with L-arabinose transport
(99.25% average conservation in coding sequence; Fig. 6¢). A high
degree of strain-level functional diversity could explain the substantial
microbiome compositional variation often observed in clinical drug
studies that rely on only 16S taxonomic analysis rather than whole
genome sequencing. Together, these results underline theimportance
of assessing bacterial drug responses at the strain level with genomic
information, as well as extending traditional microbiota drug screens
to multiple conspecific strains to capture the full intra-strain diversity
of drug responses.

Discussion

While numerous clinical studies suggest prevalent drug-microbiota
interactions>”*%*, genetic-level understanding of xenobiotic-induced
microbiota shifts remains limited. In this study, we generated a tran-
scriptome dataset for exploring gut microbiota-drug responses to
common orally delivered drugs, totalling >400 bacterial-drug pairwise
interactions. With this dataset, we uncovered that simvastatin-mediated

upregulation of the AcrAB-TolC efflux pump generates collateral

toxicity to dietary metabolites ex vivo. Using a clinical metagenomic
dataset, we confirmed that AcrAB-TolC-containing gut bacteria are
depleted in patients taking simvastatin, suggesting that upregulation
of acrAB-tolC under statin exposure increases cellular toxicity.

Beyond statins, our data established clinically relevant links
between cardiovascular medications and SSRIs and the gut microbi-
ome. Our ex vivo dataand computational analysis of T2D patient data
suggest the upregulation of tartrate metabolismin gut microorganisms
exposed to metoprolol. This result motivates the need for further clini-
cal studies to determine whether metoprolol tartrate places patients
at higher risk of developing T2D and other metabolic disorders. The
clinical dataset used in our analysis does not distinguish metopro-
lol tartrate versus metoprolol succinate, which are used as short- or
long-form treatment. As metoprolol tartrate exhibits a greater interin-
dividual variation in bioavailability**, future work exploring the impact
of microbiome metabolism on the in vivo bioavailability of metoprolol
tartrate and other tartrate-conjugated pharmaceuticals is warranted.
Separately, our findings provide evidence that drugs can modulate
riboflavin production by gut bacteria. Mechanistic delineation of how
pharmaceuticalsinduce or repress vitamin B, production could enable
the development of tools to promote microbial production of this
essential vitamin®. As vitamin B, depletions have been linked to depres-
sion and atherosclerosis®*>****, our data also motivate clinical studies
of whether rib-modulating medicationsimpact key vitamin reservoirs
in the microbiomes of psychiatric and cardiovascular patients, and
whether these interactions impact disease pathology.

Froman ecological standpoint, shared transcriptional responses
could provide mechanistic insights into how pharmaceuticals drive
shiftsin microbiome populations over time. Our pathway meta-analysis
showed that many drugs upregulate highly conserved bacterial multid-
rug efflux pumps. Efflux-associated pathways were distinct fromresist-
ance pathways upregulated by traditional antibiotics, suggesting novel
mechanisms of drug-driven microbiota responses. Our results showing
efflux-mediated collateral toxicity induced by simvastatin-retinol
co-incubation underline the importance of exploring the molecular
efflux networks to identify drug-efflux pump interactions that can
result in gut microbiota shifts. Furthermore, recent data have linked
chronic prescription drug use and polypharmacy with antimicrobial
resistance in gut microbiota*. One work even linked the upregulation
of efflux pumps by four antidepressants used in our study (sertraline,
duloxetine, escitalopram and bupropion) to the promotion of antimi-
crobial resistance among gut community members®. These data all
suggest that chronic medication-induced increases in the activity of
efflux pumps could contribute to higher rates of antimicrobial resist-
ance among gut microbiota within patient populations.

Our study has several limitations. Ex vivo screens cannot capture
the full environmental complexity that may exist between microbiota
community members and the host in vivo, and transcriptomics does
notdirectly probe host-mediated drug-microbiotainteractions. While
many of our observed inhibitory drug activities aligned with published
clinical data>*, we detected neither growth nor transcriptional changes
ingut bacteriaexposed to metformin. Therole of host-derived factors
mediating metformin-induced microbiota shifts is well documented
(thatis, secondary bile acids cause depletion of Bacteroides and enrich-
ment of Escherichia species that trigger downstream regulation of
the farnesoid receptor)®. This and other instances of low transcrip-
tomic signals generated in our study by drugs linked to microbiota
changes in vivo (for example, omeprazole) could suggest missing
host-or community-derived factors, motivating future in vivo studies
thatintegrate these other factors (for example, bile acids and dietary
vitamins). While we leveraged published clinical microbiome data to
further validate our ex vivo drug-microorganisminteraction results,
our simvastatin findings could benefit from prospective clinical trials
designed to dissect the impacts of simvastatin and disease status on
gut microbiota dynamics, and to determine whether AcrAB-TolC is
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simply abiomarker or afunctional mediator of simvastatin-associated
gut microbiota shifts.

Altogether, this work has shown the utility of high-throughput
transcriptomics to delineate microbiota-drug interactions. We envi-
sion that this low-cost and scalable pipeline can be easily applied to
any microbiota-treatment pairing including xenobiotic, prebioticand
probiotic treatments. These efforts will lead to a greater mechanistic
understanding of how different environmental exposures impact the
gut microbiome that in turn can affect host health and response to
medical interventions.

Methods

Materials and culture conditions

Allbacteriaused in this study have fully sequenced genomes, the infor-
mation forwhich canbe foundin Supplementary Table 3. Natural bacte-
rialisolates used in this study were derived from a single faecal sample
taken from a healthy individual for an unrelated study. The sex and
gender of this individual, while reported in the unrelated study, were
deemed irrelevantin this study and were not reported. This work was
approved and conducted under Columbia University Medical Center
Institutional Review Board protocol AAARQ753, and written informed
consent was obtained from the subject. Additional conspecific strains
of A. rectalis, F. saccharivorans, B. uniformis, P. vulgatus and B. fragilis,
aswellasthe Fggerthellalentastraindescribed inref. 15, were obtained
from public strain catalogues. All publicly available strains used in
this study were purchased either from the American Type Culture
Collection or from the Leibniz Institute DSMZ-German Collection
of Microorganisms and Cell Cultures GmbH. All monoclonal isolates
were Sanger sequenced (Azenta Life Sciences) at the 16Sv4 region
pre- and post-experimentation to confirm strain identity. Natural
isolatesused in this study are available from the corresponding author
uponrequest.

For our drug panel, we selected 19 orally administered drugs from
the top-prescribed pharmaceuticals in 2017 according to the Agency
for Healthcare Research and Quality (Supplementary Table 4)*'. This
listincluded the top eight most prescribed drugs, included lisinopril,
atorvastatin, levothyroxine, metformin, amlodipine, metoprolol,
omeprazole and simvastatin. Additional neurotransmitter modulators
were selected from the top 25 drugs prescribed, as follows: sertraline,
fluoxetine, citalopram, escitalopram, paroxetine, duloxetine, venla-
faxine, amitriptyline, bupropion and trazodone. We finally included
lenalidomide owing toits large market cap®. All chemicals usedin this
study were purchased from Sigma-Aldrich, Thermo Scientific Chemi-
cals or Avantor (Supplementary Tables 4, 9 and 10). Probes for rRNA
depletions were purchased from Integrated DNA Technologies. Unless
otherwise noted, bacterial cultures were grown in one-half-diluted Gifu
Anaerobic Medium Broth, Modified (mGAM, HyServe 05433) media
prepared according to manufacturers’ instructions. Before experi-
mentation, all mGAM media were reduced for 24 h under anaerobic
conditions (5% H,,10% CO,, 85% N,) within a Coy Laboratory Products
anaerobic chamber. Chemical plates were prepared in 96-well for-
mat under aerobic sterile conditions and reduced for 3-6 h before
experimentation.

Bacterial transcriptome preparation and extraction
For all transcriptomic experiments, bacterial cultures at exponential
phase were added to 96-deep-well plates (Axygen P-DW-20-C) contain-
ing pre-reduced chemicals to reach a final concentration of 20 uM
(500 pM for metformin). After 90 min of exposure in shaken mediaat
37 °C, cultures were centrifuged, the supernatant was removed and
cell pellets were transferred to —80 °C before bacterial RNA extraction.
Bacterial RNA was extracted using RNAsnap methods®®. Briefly,
frozen bacterial pellets were suspended in 500 pl RNAsnap mix (95%
formamide, 18 mM ethylenediaminetetraacetic acid, 0.025% sodium
dodecyl sulphate, 1% B-mercaptoethanol) before addition of ~200 pl

of 0.1 mm zirconia silica beads (Biospec 11079101Z). Cells were then
lysed by bead beating for 3 x 2.5 min in a Biospec Mini Bead Beater
(Biospec 1001) with 5-min intervals and then subjected to centrifu-
gation at 4,300 x g for 5 min. The clean supernatant was then trans-
ferred to a new deep-well plate, and RNA was purified using a Zymo
ZR-96 RNA Clean & Concentrator Kit (Zymo R1080) per manufacturer’s
instructions.

RNA-seq library preparation and sequencing
RNA-seq libraries were constructed following a modified RNAtag-seq
protocol as detailed in ref. 24. Briefly, 400 ng of total RNA lysate was
subjected to fragmentationin 2x FastAP buffer (ThermoFisher EF0651),
genomic DNA removal (TURBO DNase, ThermoFisher AM2239) and
dephosphorylation (FastAP, ThermoFisher EFO0651). Fragmented RNA
was purified using SeraPure SPRIbead cleanup® and ligated with bar-
coded first adapter ligation by T4 RNA ligase | (NEB M0437M). After
pooling and purification with the Zymo RNA Clean & Concentrator-5
Kit (Zymo R1015), we quantified barcoded RNA using a Qubit RNA HS
Assay Kit (ThermoFisher Q32855) and then performed RNase-H-based
ribosomal RNA depletion on 400 ng of barcoded RNA sample using a
10:1 probe-to-RNA ratio, as previously outlined*.

rRNA-depleted RNA was subjected to downstream library prepa-
ration following standard RNAtag-seq protocols?, including reverse
transcription (ThermoFisher 18090010) and second adapter ligation
(NEB M0437M). Ligation products were further amplified with prim-
ers containing lllumina P5 and P7 adapters and sample indexes, and
polymerase chainreactions (PCRs) were stopped during exponential
amplification. PCR products were subjected to gel electrophoresis
on E-Gel EX Agarose Gels, 2% (ThermoFisher G402002) and expected
DNA smears (300-600 bp) were excised and extracted using the Mon-
arch DNA Gel Extraction Kit (NEB T1020L). Resulting libraries were
sequenced toaminimum of 4.9x (Supplementary Table 6). Sequences
of all adapters and primers used in library preparation are provided
inref.24.

RNA-seq data analyses

RNA libraries were analysed for differential expression analysis as
outlined inref. 24, which lists all adapter and primer sequences used.
Briefly, raw sequencing reads were demultiplexed using Sabre’™ and
bcl2fastq” before adapter removal with Cutadapt v2.1 (ref. 72), using
parameters “-a file:[RNAtagSeq adapter.fa] -u 5 -minimum-length 20
-max-n0-q20’toremove low-quality bases and adapters. To mitigate
the effect of rRNA reads, we performed alignments against the16S and
23S rRNAs of corresponding strains with Bowtie2 (ref. 73), using the
versions and parameters outlined in ref. 24. Genomes of natural isolates
used for sequencing alignments were de novo assembled as described
inref. 24. Genome assemblies for all publicly available isolates were
downloaded fromthe NCBI database, with all accession numbers listed
in Supplementary Table 3. The number of reads uniquely mapped
to each coding sequence was calculated using featureCounts v1.6.2
(ref. 74) without restraint on strandness (-s 0), and the expression level
of each coding sequence (CDS) by transcripts per million (TPM) was
quantified using an in-house script.

Finally, we used DESeq2 (ref. 75) to perform differential expres-
sion analysis onthe number of reads uniquely mapped to each coding
sequence, calculating the FC of gene expression after perturbations.
Differential gene expression was defined as >2 FC in gene expression
relative toavehicle control, with P,4; < 0.05, and average fragments per
kilobase per million reads aligning to annotated open reading frame
(FPKMO) > 0.10. P values of differential expression were all adjusted
using the Benjamini-Hochberg procedure in DESeq2 using default
settings. Identified DEGs were used to identify drug-enriched mod-
ules and pathways using the KEGG database’. KEGG enrichment with
P,;;<0.05and e<.00001 was considered statistically significant. All
analyses were visualized inR”’.
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Growth assays

For all growth experiments, overnight bacterial cultures were back
diluted 1:100 before addition to 96-well plates containing 5-25 pl of
pre-reduced chemicals or bile acids to reach 2, 20 or 100 uM con-
centrations in 1 ml of solution (all concentrations for bacterial-drug
pairings are listed in Supplementary Fig. 2). As an exception, higher
concentrations of 50, 500 and 2,500 pM were used for metformin
(Methods and Supplementary Fig. 2), which has much higher predicted
drug concentrationsin theintestinal tract’. Furthermore, A. shahiiwas
not included in growth experiments as it exhibits characteristically
poor growth in liquid that prevents optical density measurements’®,
Cultures were then incubated at 37 °C in shaken media for 24 h. For
24 h temporal growth screens, 190 pl of culture was collected at 6,
10 and 24 h for measurement of OD,,, using an Epoch2 Microplate
Spectrophotometer (Agilent Technologies). For all MIC tests, cultures
were collected for visual inspection and OD4,, measurement at 24 h
only. Growthinhibition was defined inall growth experiments as rela-
tive growth depletion >30%, with false discovery rate (FDR)-adjusted
Pvalue (P,q) < 0.05. To determine statistical differences in relative
growth between conditions, two-sided independent ¢-tests with
Benjamini-Hochberg correction were performed in R to determine
FDR-adjusted Pvalues unless otherwise stated.

Analysis of public datasets

Toidentify species harbouring the acrAB-tolC operon, we generated an
amino acid reference from the P. vulgatus acrAB-tolC operon detailed
inref. 57. We then performed a homologue search for this reference
operoninapublic dataset of 4,930 representative MAGs characterized
in ref. 63. Briefly, we annotated all putative protein sequences in the
MAG dataset using Prokka’ before performing a homologue search
with blastP®’. Gene targets with an e value <107%, coverage > 90% and
identity > 40% were considered hits. We then estimated abundances
of all species containing the acrAB-tolC operon using metadata from
ref. 63. All associated P values were calculated using the two-tailed
independent t-testinR.

To examine whether metoprolol administration could be linked
tothe upregulation of the ttd operoninvivo, raw amplicon sequencing
data from a public dataset (n = 145) were downloaded from Sequence
Read Archive underaccessioncode ERP002469.Single-ended raw reads
were processed by Cutadapt v2.1 (ref. 72) with the following param-
eters ‘-minimum-length 24 -u 10-trim-n -q 15’ to remove low-quality
bases and Illuminaadapters. Reads passing quality filtering were then
aligned against our ttd operon reference by Bowtie2 v2.3.4 (ref. 73) in
very-sensitive mode. Read counts per gene were normalized by gene
length and sequencing depth (that is, reads per kilobase per million
mapped reads) for expression-level quantification. All associated
Pvalues were calculated using the Mann-Whitney testinR.

To examine whether simvastatin-modulated microbiota shifts
couldbelinked to acrAB-tolCoperon prevalence in vivo, raw amplicon
sequencing data from the cross-sectional MetaCardis BMIS cohort
(n=888) were downloaded from the EMBL-EBI European Nucleotide
Archive under accession number PRJEB37249. Single-ended raw reads
were processed by Cutadapt v2.1(ref. 72) with the following parameters
‘~minimum-length 24 -u10-trim-n -q 15’ to remove low-quality bases
and Illuminaadapters. Reads passing quality filtering were then aligned
against our acrAB-tolC operon reference by Bowtie2 v2.3.4 (ref. 73) in
very-sensitive mode. Read counts per gene were normalized by gene
length and sequencing depth (that is, reads per kilobase per million
mapped reads) for expression-level quantification. All associated P
values were calculated using the two-tailed independent ¢-testinR.

AcrAB-TolC Engineering Studies

All Bacteroides expression vectors were generated using Gib-
son assembly (NEBuilder 2x HiFi DNA assembly master mix),
and PCR fragments for cloning were generated using Q5 DNA

Polymerase (NEB). We first generated two PCR fragments from
a plasmid designed and constructed in our laboratory containing
constitutive Bacteroidales promoters described in ref. 81 (additional
features of this custom vector backbone are described in a sepa-
rate manuscript currently under consideration) to drive expression
of the AcrAB-TolC gene copies. We then cloned AcrAB-TolC copy 1
(primers TCTCGTCAAACAAATATAAATAATATAAACATGAAAAT-
GACAGTAAATAGTATGAAATGT and AGAAGGGCACCAATAACT-
GCCTTAAAAAAATTAATTATTCACGTCCACCGC) and copy 2
(primers TCTCGTCAAACAAATATAAATAATATAAACATGAAATTTTATT-
GCAAACCTACGT and AGAAGGGCACCAATAACTGCCTTAAAAAAAT-
TATTCTTTTTTGCCTTTGGTCATC) from the P. vulgatus H1 genome
using PCR. A three-fragment Gibson assembly was incubated at 50 °C
for 1h to generate our plasmid construct. As a control, we cloned a
tetracycline (Tet)-resistance gene (described inref. 82) into our plasmid
constructin place of AcrAB-TolC cargo. Finally, AcrAB-TolC-containing
plasmids (or Tet plasmid controls) were transformed into chemically
competent NEB turbo cells. Transformed colonies were screened
by PCR for the correct insert size length, and whole plasmids were
sequenced on an [llumina NextSeq 500/550 platform or using Plas-
midsaurus. Vector constructs with the correct payload were used in
subsequent conjugation experiments.

Before conjugation, donor strains harbouring conjugative Bac-
teroides expression vectors were grown fromasingle colony in 5 ml of
LB-Lennox media (BD) supplemented with 50 pg ml™ of carbenicillin
and 50 pM DAP at 37 °C overnight (-10-16 h). We prepared donor and
recipient P. vulgatus H1 cells and carried out conjugations as previ-
ously described inref. 83 under anaerobic conditions. Transconjugant
colonies were Sanger sequenced at the 16Sv4 region to confirm strain
identity, and stable plasmid maintenance was confirmed with colony
PCR using the primers listed above. Positive P. vulgatus transconju-
gants were then picked into 5 ml one-half mGAM supplemented with
20 pg ml™ erythromycin and grown overnight. These strains were
banked inglycerol stocks (25% glycerol final concentration) and stored
at -80 °C. Subsequent growth curve experiments were done using
overnight cultures grown from these glycerol stocks in one-half mGAM.

Conspecific strain gene mapping

To compare the transcriptomic response for strains of the same spe-
cies, we performed gene mapping for five pairs of conspecific strains
used in this study. Briefly, all protein sequences of the strains were
firstannotated using Prokka’. Protein alignment was then performed
for the protein sequences of conspecific strains by blastP*’ using the
parameters ‘-max_target_seqs 20 -evalue 0.001". Hits with identity >0.75
and coverage >0.75 were considered as mapped genes for conspecific
strains.

Statistics and reproducibility

For all isolates generated in this study, individual origins of isolated
gut strains were assigned based on the defined identity of original
faeces (Supplementary Table 2), for which covariate analysis is not
applicable. The specific number of bacterial strains used in this study
(19) was chosen to allow for inclusion of major bacterial phylawithinan
individual donor microbiome, with replicatesincluded as described in
Methods to allow for statistical significance calculations. For clinical
datasets analysed, the cohort assignment for individuals was taken
from the metadata of the original study. Blinding was not possible
during experiments as we were comparing transcriptional responses
of different bacterial isolates to different drug conditions. Transcrip-
tomic and growth processing within species was blinded as different
drug conditions were processed together using pooled methods.
Data exclusion was based on sequencing coverage or genome qual-
ity to remove technical artifacts as described in Methods. The sam-
ple sizes in this study are either number of bacterial strains tested
(with replicates; see below) or number of experimental or control
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cohort individuals taken from a publicly available dataset (for which
sample size calculations were already performed). All sample sizes
are listed in figure legends and Methods sections where applicable.
Allin vitro assays on bacterial strains were performed with multiple
(two to four) technical replicates, as noted in Methods and figure
legends where applicable, to confirm replicability and enable statis-
tical significance calculations. All analyses of associated data were
performed with the same parameters and criteria described in Meth-
ods. Data distribution was assumed to be normal, but this was not
formally tested.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Allsequencing datagenerated in this study have been submitted tothe
NCBIBioProject database (http://www.ncbi.nlm.nih.gov/bioproject/)
under accession number PRJNA925551.

Code availability
Scripts used to analyse sequencing data in this study can be accessed
at https://github.com/wanglabcumc/microbial RNAseq_processing.
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Sample size individuals taken from a publicly available dataset (for which sample size calculations were already performed). The specific # of bacterial
strains used in this study (19) were chosen to allow for inclusion of major bacterial phyla within an individual donor microbiome, with
replicates included to allow for statistical significance calculations. All sample sizes are listed in figure legends and methods sections where
applicable.

Data exclusions  Data exclusion was based on sequencing coverage or genome quality to remove technical artifacts as described in the Methods section.
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